AKADEMIA MORSKA w SZCZECINIE

WYDZIAŁ MECHANICZNY

mgr inż. Szymon Grzesiak

Koncepcja modyfikacji złożonego obiegu parowego w turbinowym układzie napędowym zbiornikowca

ROZPRAWA DOKTORSKA

Promotor: dr hab. inż. Andrzej Adamkiewicz, prof. AM w Szczecinie Promotor pomocniczy: dr inż. st. of. mech. okr. Jan Drzewieniecki, prof. AM w Szczecinie

Szczecin 2022

SPIS TREŚCI

WYKAZ WAŻNIEJSZYCH OZNACZEŃ, INDEKSÓW I SKRÓTÓW	5
WSTĘP	8
1. STAN ROZWOJU UKŁADÓW NAPĘDOWYCH ZBIORNIKOWCÓW LNG	10
1.1. Geneza turbinowego napędu parowego zbiornikowców LNG	10
1.2. Realizacja układu z turbiną parowa w układzie energetycznym zbiornikowca LNG	13
1.3. Układy napędowe zbiornikowców LNG z zastosowaniem turbinowych zespołów parowych	17
1.3.1. Konwencjonalne układy parowe	18
1.3.2. Zaawansowane układy parowe (UST, ART)	20
1.3.3. Układ hybrydowy (STaGE)	24
1.4. Analiza porównawcza turbinowych układów napędowych zbiornikowców LNG	25
1.5. Alternatywne układy napędowe zbiornikowców LNG	27
1.5.1. Układy z przekładnią elektryczną (DFDE)	28
1.5.2. Układy z ponownym skraplaniem gazu (DRL)	29
1.5.3. Układy z dwupaliwowymi silnikami wolnoobrotowymi (DF SSD)	30
1.5.4. Układy kombinowane (COGAS/COGES)	31
1.6. Ocena kryterialna układów napędowych	32
1.7. Analiza literatury – podsumowanie	34
2. SFORMUŁOWANIE PROBLEMU BADAWCZEGO	36
2.1. Geneza problemu badawczego	36
2.2. Cel pracy	37
2.3. Zakres pracy	38
3. IDENTYFIKACJA ŹRÓDEŁ ENERGII ODPADOWEJ KONWENCJONALNEGO UKŁADU PAROWEGO	40
3.1. Program eksperymentu eksploatacyjnego	40
3.1.1. Wybór obiektu badań	40
3.1.2. Model cieplno-przepływowy obiektu badań	41
3.1.3. Metodyka i program eksperymentu	43
3.2. Bilans energetyczny turbinowego układu napędowego	45
3.2.1. Wielkości wejściowe	46
3.2.2. Algorytm obliczeń	48
3.2.3. Wyniki obliczeń i dyskusja bilansu energetycznego	50
3.3. Ocena jakościowa źródeł energii odpadowej układu	53
3.4. Podsumowanie	56

4.	OBLICZENIA WSTĘPNE TURBINOWEGO OBIEGU PAROWEGO Z INŻEKTOREM PAROWYM	. 57
	4.1. Koncepcia układu z zastosowaniem inżektora parowego	. 57
	4.2. Obliczenia wstepne rozpatrywanego układu	. 59
	4.2.1. Algorytm obliczeń parametrów pracy inżektora parowego	. 59
	4.2.2. Bilans energetyczny obiegu z inżektorem parowym	. 65
	4.3. Podsumowanie	. 67
5.	DOBÓR PARAMETRÓW PRACY INŻEKTORA PAROWEGO	. 68
	5.1. Wyznaczenie parametrów pary zasilającej inżektor	. 68
	5.2. Określenie parametrów pary wylotowej inżektora pierwszego stopnia	. 69
	5.3. Określenie parametrów pary wylotowej z inżektora drugiego stopnia	. 73
	5.4. Podsumowanie	. 77
6.	BADANIA NUMERYCZNE UKŁADÓW Z ZASTOSOWANIEM INŻEKTORÓW PAROWYCH DO REGENERACYJNEGO PODGRZEWANIA WODY ZASILAJĄCEJ KOCIOŁ PAROWY	. 78
	6.1. Program badań numerycznych	. 78
	6.2. Układy referencyjne	. 79
	6.3. Układ z zastosowaniem podciśnieniowych powierzchniowych wymienników ciepła	. 80
	6.3.1. Układy jednostopniowego podgrzewania wody zasilającej	. 80
	6.3.2. Dwustopniowe podgrzewanie wody zasilającej z wykorzystaniem inżektorów parowych	. 84
	6.4. Układ z zastosowaniem zbiornika mieszankowego	. 88
	6.5. Układ z zastosowaniem nadciśnieniowych powierzchniowych wymienników ciepła	. 92
	6.6. Układy dwustopniowego sprężania pary	. 95
	6.6.1. Zastosowanie dwustopniowego sprężania pary w układzie jednostopniowego podgrzewania wody zasilającej	. 95
	6.6.2. Zastosowanie dwustopniowego sprężania pary w układzie dwustopniowego podgrzewania wody zasilającej	. 97
	6.7. Podsumowanie	100
7.	PROPONOWANE ROZWIĄZANIA ZŁOŻONEGO TURBINOWEGO UKŁADU PAROWEGO Z ZASTOSOWANIEM INŻEKTORÓW PAROWYCH ODZYSKUJĄCYCH CIEPŁO SKRAPLANIA PARY WYLOTOWEJ	102
	7.1. Układ referencyjny złożonego obiegu parowego	103
	7.2. Układ regeneracyjny z zastosowaniem jednego inżektora parowego (zasilającego podgrzewacz niskiego ciśnienia) – układ CR 3/1	104
	7.3. Układ regeneracyjny z zastosowaniem dwóch inżektorów parowych – układ CR3/2	107

7.4. U de	Jkład odatk	regeneracyjny z zastosowaniem trzech inżektorów parowych oraz owego podciśnieniowego wymiennika ciepła – układ CR4/3 110
7	.4.1.	Układ z trzema niezależnymi inżektorami parowymi CR4/3 110
7	.4.2.	Układ z zastosowaniem czterech wymienników ciepła, trzech inżektorów parowych CR4/3 2s1
7	.4.3.	Układ z zastosowaniem czterech wymienników ciepła, trzech inżektorów parowych CR4/3 2s2 117
7.5. Z or	iłożon raz cz	e układy regeneracyjne z wykorzystaniem pięciu wymienników ciepła terech inżektorów regeneracyjnych. Układy CR5/4119
7	.5.1.	Złożony układ regeneracyjny z dodatkowym wymiennikiem ciepła w części niskociśnieniowej oraz jednym zespołem inżektorowym CR5/4 N 2s1
7	.5.2.	Złożony układ regeneracyjny z dodatkowym wymiennikiem ciepła w części niskociśnieniowej oraz jednym zespołem inżektorowym CR5/4 N 2s2
7	.5.3.	Złożony układ regeneracyjny z dodatkowym wymiennikiem ciepła w części wysokociśnieniowej oraz jednym zespołem inżektorowym CR5/4 W 2s1
7	.5.4.	Złożony układ regeneracyjny z dodatkowym wymiennikiem ciepła w części wysokociśnieniowej oraz dwoma dwustopniowymi zespołami inżektorowymi CR5/4 W 2s2
7	.5.5.	Analiza wyników132
7.6. P	odsur	nowanie wyników badań133
PODSUN	MOW	ANIE I WNIOSKI KOŃCOWE137
LITERA	TUR	A
STRESZ	CZEN	NIE
ABSTRA	ACT	
SPIS RY	SUN	KÓW152
SPIS TA	BEL.	

WYKAZ WAŻNIEJSZYCH OZNACZEŃ, INDEKSÓW I SKRÓTÓW

Oznaczenia

```
b – egzergia [kJ/kg] (dla rozdziału 3.3)
b – jednostkowe zapotrzebowanie powietrza [kg powietrza/kg paliwa](dla rozdziału 3.2)
cp – pojemność cieplna [kJ/kgK]
D – wydajność kotła [T/h]
g – jednostkowe zużycie paliwa [g/kWh]
G – godzinowe zużycie paliwa [kg/h]
i – entalpia właściwa [kJ/kg]
l – jednostkowa praca [kJ/kg]
\dot{m} – strumień masy [kg/s]
N - moc [kW]
n – wykładnik politropy (rozdział 4)
p - ciśnienie [MPa; bar = 10<sup>5</sup> Pa]
q – ciepło właściwe [kJ/kg]
s – entropia właściwa [kJ/kgK]
S – entropia [kJ/K]
t – temperatura [°C]
T- temperatura [K]
u – energia wewnętrzna właściwa [kJ/kg]
W<sub>d</sub> – dolna wartość opałowa [kJ/kg]
x – stopień suchości pary wodnej [-]
\varepsilon – stopień regeneracji układu [%]
\sigma – stopień eżekcji [-]
w – prędkość czynnika roboczego [m/s]
v - objętość właściwa [m<sup>3</sup>/kg]
\eta - sprawność [-]
χ – współczynnik nierównomierności profilu prędkość [-]
κ – wykładnik izentropy [-]
\lambda – współczynnik nadmiaru powietrza [-]
\psi – współczynnik jakości energii [-] (dla rozdziału 3)
\psi – współczynnik do uśredniania prędkości względem energii kinetycznej [-] (dla rozdziału 4)
\phi - współczynnik strat dyszy roboczej - sprawność wykresowa [-]
Indeksy
1, 2, 3, 4, 5...n – numeracja płaszczyzn kontrolnych
C, D, L, N, x – płaszczyzny kontrolne inżektora parowego
0 - stan wzorcowy (dla warunków otoczenia)
air – powietrza
abs – absolutne (dla ciśnienia p<sub>abs</sub> [barA])
alt - alternator - pradnica
```

boiler – kocioł b/i – egzergetyczny CR - Clausiusa-Rankinea d – doprowadzone (dla rozdziałów 1 oraz 3) d – dyfuzora e-efektywne/a/y Exh – exhaust – dla spalin gb – gear box – przekładnia mechaniczna in – parametr na wejściu i-internal-wewnętrzna izen - izentropowy 1 - losses - strataMT – Main Turbine – turbina napędu głównego m – mechanical - mechaniczna n – nasycenia out – parametr na wyjściu p – pompa steam - dla pary T - temperaturowy TA – Turbo Alternator – turbinowy zespół prądotwórczy t-teoretyczne/a/y w-wyprowadzone z - zapotrzebowane

Skróty

- ADT (Atmospheric Drain Tank) Atmosferyczna skrzynia cieplna;
- **ART** (Advanced Reheat Turbine) nazwa własna zaawansowanego turbinowego układu parowego firmy Kawasaki;
- BOG (Boil Off Gas) gaz odparowany w sposób naturalny;
- **BTU** (British Thermal Unit) jednostka energii 1MMBTU jest ekwiwalentem 28,26 m³ gazu ziemnego;
- CO (Carbon Monoxide) tlenek węgla;
- CO2 (Carbon Dioxide) ditlenek węgla;
- COGAS (Combined Gas And Steam) –kombinowany zespół napędowy z turbiną gazową i parową;
- **COGES** (Combined Gas Electric Steam) –kombinowany zespół napędowy z turbiną gazową i parową, współpracujący z przekładnią elektryczną;
- CTS (Conventional Steam Turbine) konwencjonalny/klasyczny napęd turbo parowy;
- DFDE (Dual Fuel Diesel Electric) układ napędowy dwupaliwowy, spalinowo elektryczny;
- **DF SSD** (Dual Fuel Slow Speed Diesel) Układ napędowy dwupaliwowy, z wolnoobrotowymi silnikami wysokoprężnymi;
- DG (Diesel Generator) spalinowy zespół prądotwórczy;
- DSIC (Dalian Shipbuilding Industry Company) nazwa własna Stoczni Dalian;

DRL (Diesel with Reliquefaction Plant) – układ wykorzystujący jednopaliwowe spalinowe silniki wolnoobrotowe z układem ponownego skraplania gazu;

DTR – dokumentacja techniczno-ruchowa;

DWT (DeadWeight Tonnage) – nośność statku;

FPSO (Floating Production, Storage, and Offload unit) – jednostka produkcyjnomagazynująco- przeładowująca;

FP (Feed Pump) – pompa zasilająca wody kotłowej;

GWP (Global Warming Potential) – potencjał cieplarniany;

HFO (Heavy Fuel Oil) – pozostałościowe paliwo żeglugowe;

HP (High Pressure) – wysokie ciśnienie;

IP (Intermediate Pressure) – ciśnienie pośrednie;

IAS (Integrated Automation System) - zintegrowany system automatyki

KHI (Kawasaki Heavy Industries) - nazwa własna producenta układów napędowych;

L/D (Low Duty compressor) - kompresor gazu zasilający siłownię okrętową;

LNG (Liquefied Natural Gas) – skroplony gaz ziemny;

LP (Low Pressure) – niskie ciśnienie;

LPSG (Low Pressure Steam Generator) - wytwornica pary niskiego ciśnienia;

MCR (Maximum Continuous Rating) – moc maksymalna pracy ciągłej;

MDO (Marine Diesel Oil) – destylacyjne paliwo żeglugowe;

MHI (Mitsubishi Heavy Industries) – nazwa własna;

MT (Main Turbine) - turbina napędu głównego

M/S (Motor Ship) statek motorowy; statek napędzany tłokowymi silnikami spalinowymi

NO_x (Nitrogen Oxide) – tlenki azotu;

ORC (Organic Rankine Cycle) – organiczny obieg Rankinea;

PTI (Power Take In) – w odniesieniu do prądnicy wałowej – tryb pracy silnikowej;

PTO (Power Take Off) - w odniesieniu do prądnicy wałowej - tryb pracy generatorowej

PMS (Power Management System) – System zarządzania elektrownią okrętową

RPM (Revolution Per Minute) – prędkość obrotowa ;

- SCR (Selective Catalytic Reduction) układ oczyszczania spalin selektywna katalityczna redukcja (NO_x)
- **SO**_x (Sulphur Oxide) tlenki siarki;
- S/S (Steam Ship) statek z napędem parowym;
- **STaGE** (Steam Turbine and Gas Engine) nazwa własna hybrydowego układu napędowego wykorzystującego turbiny parowe firmy Mitsubishi;

TFDF (Triple Fuel Diesel Electric) – napęd trójpaliwowy – spalinowo elektryczny

TG (Turbo Generator) - Turbinowy zespół prądotwórczy

ULCC (Ultra Large Crude oil Carrier) – tankowiec o nośności 320-550 tyś. DWT

- UST (Ultra Steam Turbine) nazwa własna zaawansowanego turbinowego układu parowego firmy Mitsubishi;
- VLCC (Very Large Crude oil Carrier) tankowiec o nośności 200-320 tyś. DWT

WSTĘP

Przedmiotem niniejszej rozprawy było poszukiwanie możliwości poprawy sprawności cieplnej turbinowych, parowych układów napędowych, powszechnie stosowanych w systemach energetycznych zbiornikowców do przewozu skroplonego gazu ziemnego.

Problematyka ta pozostaje aktualnym zagadnieniem badawczo – rozwojowym od wielu lat. Jednak dla zastosowań transportu morskiego obserwować można znaczne zahamowanie wykorzystania turbinowych układów parowych do napędu statku. Dla znacznej większości statków towarowych od początku lat 70 XX wieku w charakterze jednostek napędowych głównie stosuje się tłokowe silniki spalinowe. Dla zbiornikowców przystosowanych do przewozu skroplonego gazu ziemnego – *LNG* (Liqufied Natural Gas), to właśnie turbiny parowe pozostawały jedyną dostępną technicznie opcją układu napędowego. Wynikało to z możliwości utrzymania ciśnienia w zbiornikach ładunkowych, rosnącego w wyniku wrzenia gazu, oraz użytecznego wykorzystania odparowanego gazu jako paliwa w kotłach parowych, a następnie wytworzonej w nich pary wodnej do napędu statku oraz instalacji pomocniczych.

Rozwój technologii związanej z wykorzystaniem gazu ziemnego jako paliwa dla tłokowych silników spalinowych spowodował na początku XXI wieku zmianę tego trendu. Układy wykorzystujące wysoce sprawne wolnoobrotowe silniki o zapłonie samoczynnym rozpoczęły gwałtowną ekspansję także wśród układów napędowych zbiornikowców *LNG*, stopniowo wypierając układy parowe. Przyczynę tej sytuacji można bezpośrednio upatrywać w niższej sprawności układów parowych, a równocześnie wyższej emisji dwutlenku węgla, w celu wykonania porównywalnego zadania transportowego.

W związku z powyższym niniejsza praca stanowi próbę poszukiwania możliwości poprawy sprawności cieplnej złożonych układów realizujących regeneracyjny obieg z turbiną parową.

W rozdziale pierwszym pracy przeprowadzono analizę rozwiązań współczesnych układów napędowych zbiornikowców *LNG*, które oceniono pod kontem kryterium energetyczno – emisyjnego, eksploatacyjnego oraz ekonomicznego.

Potwierdziła ona, iż pomimo szeregu zalet turbinowych układów parowych, sprawność cieplna tych siłowni nie jest konkurencyjna wobec układów z wolnoobrotowymi silnikami o zapłonie samoczynnym. Odpowiedzią głównych producentów turbin parowych, na szybką ekspansję alternatywnych układów napędowych, były prace rozwojowe, które w głównej mierze skupiają się na podnoszeniu parametrów stanu górnego źródła ciepła realizowanego obiegu oraz zastosowaniu przegrzewu wtórnego pary (zwiększenie strumienia ciepła doprowadzonego do obiegu), oraz minimalizowaniu strat wewnętrznych poprzez doskonalenie ich konstrukcji. Prace te jedynie w sposób pośredni dotyczą problematyki poprawy sprawności układu poprzez odzysk energii odpadowej.

Poszukując dróg modyfikacji i zwiększenia sprawności energetycznej układu napędowego, w rozdziale trzecim przeprowadzono identyfikację parametryczną konwencjonalnej turbinowej siłowni parowej, z wykorzystaniem biernego eksperymentu eksploatacyjnego.

Pomiary wykonano w trakcie pracy autora na zbiornikowcu *LNG* z konwencjonalnym napędem turbinowym. Zebrane wyniki pomiarów posłużyły jako dane wejściowe do modelu matematycznego siłowni parowej, umożliwiającego wykonanie jej bilansu energetycznego dla

najczęściej występującego stanu eksploatacyjnego – podróż morska – cała naprzód (100% *MCR* – Maximum Continuous Rating). Wyznaczono strumienie energii odpadowej oraz poddano je ocenie jakościowej.

Na podstawie analizy własności źródeł energii odpadowej, zaproponowano wykorzystanie ciepła skraplania pary odlotowej z turbiny napędu głównego, jako największego źródła dyssypacji energii turbinowej siłowni parowej. Do dalszych rozważań w rozprawie przyjęto rozwiązanie, w którym wykorzystanie części ciepła skraplania zawartego w strumieniu pary odlotowej można osiągnąć poprzez mieszanie się strumieni pary odlotowej oraz zaczepowej. Rozważono wykorzystanie inżektora parowego, w którym zachodzi mieszanie strumieni pary zaczepowej z parą odlotową z turbin, oraz zastosowanie otrzymanej mieszaniny pary jako czynnika grzewczego w regeneracyjnym układzie podgrzewania wody zasilającej kocioł.

W rozdziale czwartym postawiono hipotezę iż zastosowanie inżektora parowego spowoduje zmniejszenie zapotrzebowania na parę upustową, odzyskując tym samym większą ilość ciepła skraplania pary w procesie podgrzewania regeneracyjnego wody kotłowej. Hipotezę tę wstępnie potwierdzono budując model matematyczny regeneracyjnego układu podgrzewania wody kotłowej z inżektorami parowymi.

W rozdziale piątym wyznaczono parametry pracy inżektorów parowych (pojedynczych oraz dwustopniowych zespołów inżektorowych), w oparciu o stworzony w rozdziale czwartym algorytm urządzenia inżektorowego, dla dostępnych parametrów pary zasilającej oraz założonych stopni eżekcji.

W rozdziale szóstym przeprowadzono wielowariantową analizę zastosowań inżektorów parowych w układach z zastosowaniem trzech rodzajów wymienników ciepła. Na jej podstawie wyznaczono zakresy temperatur dla układów wykorzystujących poszczególne wymienniki ciepła zasilane parą odlotową z inżektorów.

W rozdziale siódmym przeanalizowano rozwiązania stanowiące modyfikację układu referencyjnego, od układów najprostszych, wykorzystujących jeden inżektor parowy, do układów o znacznym stopniu złożoności, z wykorzystaniem pięciu wymienników ciepła oraz czterech inżektorów parowych, w tym z dwustopniowymi zespołami inżektorowymi. Przeprowadzone badania numeryczne potwierdziły możliwość podwyższenia sprawności cieplnej realizowanego obiegu poprzez zastosowanie proponowanych rozwiązań modernizacyjnych z dyskutowaną efektywnością.

W dwóch załącznikach do pracy zebrano zbiorcze wyniki obliczeń. W załączniku nr 1 przedstawiono wyniki wyznaczonych parametrów pracy inżektorów parowych. Załącznik nr 2 stanowi zbiór wyników obliczeń bilansów cieplnych rozpatrywanych w rozdziale szóstym układów z regeneracyjnymi inżektorami parowymi.

W modelach matematycznych rozprawy, zgodnie z zasadami teorii maszyn wirnikowych, zastosowano konwencję notacyjną oznaczeń i indeksów, przyporządkowaną adekwatnie do przedmiotu badań, z indeksacją stanów oraz parametrów w płaszczyznach kontrolnych wg kolejności realizacji przemian. W pracy oznaczano parametry pary świeżej, na dolocie do turbiny, cyfrą "1".

Wartości parametrów wielkości mierzonych i obliczanych, ze względu na porównywalność w odbiorze wyników, pomiarów jak i obliczeń, posłużono się jednostką ciśnienia bar oraz temperaturą w skali Celsjusza, jako jednostkami dopuszczonymi do stosowania w okrętownictwie, odstępując od jednostek podstawowych układu SI.

1. STAN ROZWOJU UKŁADÓW NAPĘDOWYCH ZBIORNIKOWCÓW LNG

Współczesne układy napędowe zbiornikowców LNG sklasyfikować można w dwóch głównych grupach:

1. Turbinowe układy parowe – w skład których wchodzą konwencjonalne układy parowe CST (Conventional Steam Turbine), zaawansowane układy parowe wykorzystujące przegrzew międzystopniowy oraz podwyższone parametry pary świeżej (UST – Ultra Steam Turbine, ART – Advance Reheat Turbine) oraz tak zwane układy hybrydowe (STaGE – Steam Turbine and Gas Engine).

2. Alternatywne układy napędowe, do których należą układy z przekładnią elektryczną (DFDE – Dual Fuel Diesel Electric), układy wyposażone w jednopaliwowe wolnoobrotowe silniki spalinowe wraz z układem ponownego skraplania gazu (DRL – Diesel with ReLiquification) oraz układy z dwupaliwowymi silnikami wolnoobrotowymi (DF SSD – Dual Fuel Slow Speed Diesel silniki MEGI firmy MAN oraz xDF firmy WinGD).

Głównym kryterium wyboru tych układów jest możliwość zastosowania gazu jako paliwa. Odparowujący ładunek powoduje wzrost ciśnienia w zbiornikach. Zastosowanie odpowiedniego układu napędowego pozwala na utrzymywania ciśnienia w zbiornikach ładunkowych na żądanym poziomie, przy jednoczesnym wykorzystaniu ładunku w charakterze paliwa.

1.1. Geneza turbinowego napędu parowego zbiornikowców LNG

Dynamiczny wzrost zapotrzebowania na gaz ziemny oraz rozwój coraz to nowszych rynków zbytu gazu na świecie w latach 50-tych XX w. skutkował koniecznością przewozu tego surowca na coraz większe odległości. Ze względu na techniczne uwarunkowania związane z przesyłem gazu pod koniec lat 50-tych podjęto próbę transportu skroplonego gazu ziemnego (*LNG*) drogą morską. Pierwszym w historii statkiem do przewozu *LNG* był metanowiec m/s Methan Pioneer [9]. Bazując na doświadczeniach zgromadzonych podczas siedmiu podróży morskich pionierskiej jednostki w 1964 roku do eksploatacji wprowadzono pierwsze, zaprojektowane z przeznaczeniem jako metanowce, zbiornikowce s/s Methan Princes oraz s/s Methan Progres. Statki te ze względu na możliwość opalania kotłów gazem odparowującym z ładunku *BOG* (Boil Off Gas), w granicach 0,1-0,15% [12, 31, 45, 63, 86, 100, 113] ładunku w zależności od warunków żeglugi, rodzaju oraz stanu izolacji termicznej zbiorników, jak również stanu załadowania, wyposażone były w parowe siłownie turbinowe z dwupaliwowymi kotłami parowymi. Siłownie te na ówczesnym etapie rozwoju technologicznego okrętownictwa były jedynym rozwiązaniem układu napędowego umożliwiającym racjonalne wykorzystanie *BOG*.

Konieczność utylizacji odparowującego ładunku wynikała jednak nie tylko ze względów ekonomicznych, lecz także ze względów ekologicznych (gaz ziemny jest gazem cieplarnianym) jak i z bezpieczeństwa żeglugi [80, 86, 100].

Dla statków transportujących LNG do połowy pierwszej dekady XXI wieku napęd parowy pozostawał rozwiązaniem wiodącym ze względu na możliwość opalania kotłów

zarówno żeglugowym paliwem ciekłym jak i gazowym. Tendencja ta uległa jednak zmianie na przełomie lat 2005-2010 (Rys. 1.1) [37, 104, 106, 112, 113].

Rys. 1.1 Wzrost liczby zbiornikowców LNG w latach 2000-2020 z podziałem na rodzaje głównych układów napędowych [112]

Wzrost cen *LNG* w latach 2001-2009 (Rys. 1.2) zmusił przemysł okrętowy do poszukiwania nowych, bardziej ekonomicznych rozwiązań siłowni statków przewożących skroplony gaz ziemny.

Z analizy zbioru zamówień stoczniowych, przedstawionego na rysunku 1.3, wynika, iż jeszcze w roku 2017 najczęściej wybieranymi były układy napędowe typu *DFDE/TFDE* ze

względu na ich deklarowaną wyższą sprawność od układów parowych. Jednakże już w tym roku widać duże zainteresowanie układami z wolnoobrotowymi silnikami dwupaliwowymi które do roku 2020 zdominowały rynek. Zbiornikowce te wyposażone są także w instalacje ponownego skraplania gazu jako alternatywny system pozwalający kontrolować ciśnienie w zbiornikach ładunkowych, w rezultacie wyparły one całkowicie układy typu *DRL*, oferując wyższą elastyczność eksploatacyjną. Początkowo układy z silnikami firmy MAN (MEGI) z wysokociśnieniowym systemem zasilania gazu (wtrysk gazu), były opcją preferowaną przez zamawiających. Jednakże już w roku 2020 aż 80% zamówień stanowią układy z silnikami firmy WinGD, wykorzystujące niskociśnieniowy układ zasilania gazem (gaz dostarczany do komory spalania we wczesnej fazie sprężania).

Rys. 1.3 Udział różnych rozwiązań układów napędowych zbiornikowców LNG w portfelu zamówień stoczniowych (stan Grudzień 2020) (Opracowanie własne na podstawie) [111, 113]

W roku 2017 wśród zamówień znalazło się 14 jednostek z parowymi układami napędowymi, z czego 7 to statki z zaawansowanymi układami wykorzystującymi podwyższone parametry pary oraz przegrzew międzystopniowy jak również hybrydowe układy wykorzystujące turbiny parowe [4] – są to jednostki przeznaczone głównie do eksploatacji w długoterminowych kontraktach. Zgodnie z danymi z 2020 roku, pomimo iż niektóre stocznie w dalszym ciągu w swojej ofercie posiadają układy wykorzystujące turbiny parowe, żadna z nich nie otrzymała zamówienia na te układy.

1.2. Realizacja układu z turbiną parowa w układzie energetycznym zbiornikowca *LNG*

Uproszczony układ cieplno-przepływowy okrętowej turbinowej siłowni parowej składającej się z podstawowych maszyn i urządzeń, realizujących przemiany obiegu przedstawiono na rysunku 1.4 [18, 19, 23, 54, 75, 76, 88, 96, 118], natomiast na rysunku 1.5 przedstawiono przemiany termodynamiczne we współrzędnych i-s oraz T-s, porównawczego obiegu Clausiusa-Rankinea.

Rys. 1.4 Uproszczony schemat układu cieplno-przepływowego obiegu Clausiusa-Rankinea

Rys. 1.5 Porównawczy obieg parowo-wodny Clausiusa-Rankinea w układzie współrzędnych i-s oraz T-s

Na rysunku 1.6 przedstawiono przykładowy schemat układu energetycznego konwencjonalnej siłowni zbiornikowca *LNG* składającej się z jednego turbozespołu napędu

głównego oraz dwóch parowych turbozespołów prądotwórczych (TG - Turbo Generator) i jednego niezależnego spalinowego zespołu pomocniczego (DG - Diesel Generator), z silnikiem zapłonie samoczynnym, zasilanym ciekłym paliwem żeglugowym [4].

Rys. 1.6 Schemat układu napędowych zbiornikowców LNG [4]

W obiegu parowo-wodnym pompa pobiera wodę zasilającą kocioł ze skraplacza o parametrach stanu 3 i tłoczy ją do kotła pod ciśnieniem p₄. W kotle na początkowym etapie 4-5 następuje izobaryczne podgrzewanie wody do parametrów stanu 5, w którym rozpoczyna się proces izotermicznego parowania. Woda pobiera ciepło parowania, które jest różnicą entalpii stanu 6 i 5. Dalsze doprowadzanie ciepła powoduje przegrzanie pary. Para przegrzana (świeża) opuszczająca kocioł o parametrach stanu 1 kierowana jest do turbiny w celu wykonania pracy l_t. Ciepło przekazane przez parę do przetworzenia w turbinie na energię mechaniczną jest równe różnicy entalpii stanu 1 i 2_{izen}.

Ciepło wyprowadzone z obiegu do otoczenia w skraplaczu, jest równe różnicy entalpii stanu 6 i 1 stanowi największe źródło strat obiegu [4, 53].

Miarą efektywności energetycznej turbinowego obiegu porównawczego Clausiusa – Rankinea jest sprawność η_{CR} , definiowana jako stosunek pracy obiegu do ciepła dostarczonego w kotle (wzór 1.1).

$$\eta_{CR} = \frac{l_t}{q_d} = \frac{l_{Tizen} - l_p}{q_d} \approx \frac{(i_1 - i_{2izen}) - (i_{4izen} - i_3)}{(i_1 - i_3)}$$
(1.1)

Udział pracy pompy w pracy teoretycznej obiegu l_p/l_t jest rzędu (1-2)%. Dlatego jej wpływ na wartość sprawności obiegu jest niewielki w porównaniu do wielkości ciepła doprowadzonego do układu, i można uznać go za inżyniersko pomijalny. Po zaniedbaniu pracy pompy zasilającej l_p , wzór 1.1 na sprawność przyjmuje postać (1.2):

$$\eta_{CR} = \frac{l_t}{q_d} = \frac{l_{Tizen} - l_p}{q_d} \approx \frac{l_{Tizen}}{q_d} \approx \frac{i_1 - i_{2izen}}{i_1 - i_3}$$
(1.2)

Stosowane współcześnie parametry pary przegrzanej p_1 , t_1 , opuszczającej kocioł (pary świeżej), wynoszą 60-120 bar (6-12 MPa), a temperatura w stanie 510-560 °C [4, 75, 27, 44, 60, 68, 101].

Przy takich parametrach górnego źródła ciepła, sprawność obiegu porównawczego Clausiusa-Rankinea waha się w przedziale η_{CR} = 0,37-0,45, natomiast sprawność obiegu rzeczywistego parowego układu napędowego przyjmuje wartości w przedziale 0,29-0,41 [3, 4, 20, 29, 53, 54]. Są to dla współczesnych siłowni okrętowych wielkości niekonkurencyjne w stosunku do innych rodzajów okrętowych silników cieplnych napędu głównego. Dlatego otwartym problemem pozostaje zwiększenie sprawności obiegu Clausiusa-Rankinea (wzór 1.1).

Zastosowane od początku eksploatacji rozwiązania turbinowych układów napędowych zbiornikowców *LNG* wykorzystywały skraplacze podciśnieniowe. Dalsza ich ewolucja mająca na celu zwiększenie teoretycznego dysponowanego spadku entalpii, realizowana była dwoma metodami:

- a. poprzez zwiększenie parametrów stanu pary świeżej,
- b. stosowanie obiegów/układów złożonych z karnotyzacją obiegu.

We współczesnych, konwencjonalnych siłowniach okrętowych stosowane są ciśnienia rzędu 60 bar (6 MPa) i temperatury pary przegrzanej 520 °C. Wyższe temperatury przegrzania pary i adekwatne do nich ciśnienia podwyższają wymagania stosowanych materiałów żarowytrzymałych konstrukcyjnych. Graniczną temperatura dla pary konwencjonalnych turbin okrętowych jest 540 °C. Powyżej tej temperatury konieczne jest stosowanie stali austenitycznych zamiast tańszej stali ferrytycznej lub stali stopowej o podwyższonej zawartości chromu i molibdenu [34, 55, 78, 79, 99, 105]. Na rysunku 1.7 przedstawiono zmiany parametrów stanu pary świeżej turbin w zastosowaniach okrętowych i ladowych w latach 1950-2005. Obecnie oferowane są zaawansowane układy parowe, wykorzystujące parę świeżą o ciśnieniu 100-120 bar (10-12 MPa) oraz temperaturze pary 560°C.

Rys. 1.7 Wzrost parametrów pary świeżej, w funkcji czasu kalendarzowego prowadzący do zwiększenia dostępnego spadku entalpii w [101]

Przedstawione kierunki zmian parametrów stanu pary świeżej uzasadniają wyniki badań pracy [73], zgodnie z którymi dla turbiny kondensacyjnej podwyższenie ciśnienia pary

przegrzanej o 1 bar zmniejsza zużycie pary o 0,3%, co wpływa dodatnio na sprawność układu o 0,1%. Wzrost temperatury przegrzewu pary o 10 K zmniejsza zużycie pary o 1.1% oraz podwyższa sprawność obiegu o 0,12% (badania przeprowadzono dla układu o parametrach pary $p_1 = 40 \text{ bar}$ (4 MPa) i temperatury t₁ = 350 °C) [73].

Drugim sposobem poprawy sprawności obiegu była karnotyzacja turbinowego obiegu parowego poprzez zastosowanie przegrzewu międzystopniowego oraz zastosowanie regeneracyjnego podgrzewu wody zasilającej.

Na rysunku 1.8 przedstawiono uproszczony schemat cieplno-przepływowy układu parowo-wodnego siłowni parowej, z międzystopniowym przegrzewaniem pary [73].

Rys. 1.8 Uproszczony schemat cieplno-przepływowy układu z przegrzewaniem międzystopniowym [73]

Para opuszczająca turbinę wysokiego ciśnienia *WC* kierowana jest do osobnej sekcji przegrzewacza w kotle, a następnie wpływa do turbiny niskiego ciśnienia *NC*. Rozwiązanie to umożliwia doprowadzenie do pary dodatkowej ilości ciepła, zwiększając dysponowany spadek entalpii turbiny niskiego ciśnienia.

Stosowane są trzy sposoby realizacji procesu przegrzewania pary w kotle:

- 1. Para ulega ponownemu przegrzaniu w przegrzewaczu wtórnym, umieszczonym w przewodzie kominowym kotła, przez ciepło spalin wylotowych. Stopień przegrzania pary może być sterowany za pomocą przysłon, by-pasując część strumienia spalin.
- 2. Osobny palnik doprowadza strumień ciepła wprost do sekcji przegrzewacza wtórnego.
- 3. Parę przegrzewa osobny kocioł przepływowy z odrębnym palnikiem [4, 34, 53, 52, 55, 72, 73, 76, 93, 99]

Dwa pierwsze sposoby znalazły zastosowanie we współczesnych układach napędowych zbiornikowców *LNG*. Firma Kawasaki zastosowała kotły z przegrzewaczami międzystopniowymi, do sterowania których wykorzystywane są przysłony. W układach *UST* firmy Mitsubishi zastosowano dodatkowy palnik wewnątrz kotła głównego.

Inną metodą karnotyzacji obiegu parowego, która na przestrzeni lat ewoluowała także w rozwiązaniach zbiornikowców *LNG* jest regeneracyjne podgrzewanie wody zasilającej kotły główne. Wzrost temperatury wody zasilającej kocioł oznacza wzrost średniej górnej temperatury obiegu termodynamicznego, a tym samym wzrost jego sprawności, nawet o 10 % [4, 13, 18, 19, 23, 49, 52, 53, 59, 89].

W klasycznym układzie turbina parowa posiada trzy upusty pary. Para z zaczepu wysokiego ciśnienia wykorzystywana jest do produkcji pary grzewczej i uzupełniania systemu pary ochłodzonej. Para z zaczepu średniego ciśnienia kierowana jest do ostatniego stopnia podgrzewacza regeneracyjnego (HP heater), podgrzewacza mieszankowo odgazowującego (deaeratora), oraz podgrzewaczy powietrza, natomiast para z zaczepu niskiego ciśnienia kierowana jest do podgrzewacza w obiegu niskiego ciśnienia wodv zasilajacej (przed deaertorem) oraz do systemu pary uszczelniajacej. W konwencjonalnych układach parowych początkowo stosowano dwa lub trzy podgrzewacze regeneracyjne. Liczba ta z biegiem lat oraz podwyższaniem parametrów pary świeżej zwiększyła się do pięciu.

Rozwiązanie to zwiększa sprawność siłowni, jednak zmniejsza dostępny spadek entalpii w turbinie napędu głównego. Zastosowanie upustów pary wpływa także korzystnie na geometrię turbiny pozwalając na zmniejszenie wysokości łopatek stopni turbiny za upustami, jak również na zmniejszenie wielkości skraplacza. Zastosowanie podgrzewaczy regeneracyjnych w znacznym stopniu komplikuje system parowy oraz zwiększa koszty inwestycji.

W najnowszych zaawansowanych rozwiązaniach turbinowych układów napędowych w wyniku zastosowania znacznie wyższych ciśnień pary świeżej, wzrosła także liczba stosowanych podgrzewaczy regeneracyjnych do 6-7.

1.3. Układy napędowe zbiornikowców LNG z zastosowaniem turbinowych zespołów parowych

Napędy parowe wyróżniają się wysoką niezawodnością, relatywnie niskimi kosztami utrzymania, możliwością opalania kotłów paliwem niskiej jakości oraz bardzo korzystną masą jednostkową. Równocześnie obarczone niską sprawnością energetyczną emitują duże strumienie szkodliwego CO_2 . Stąd prowadzone przez lata badania zmierzały do zmniejszenia zapotrzebowania paliwa, do zmniejszenia jednostkowego zużycia paliwa. W rezultacie powstały różne rozwiązania siłowni, których wspólną cechą jest stosowanie skraplacza podciśnieniowego oraz wielostopniowego podgrzewania regeneracyjnego wody zasilającej kotły. Układy te w literaturze określane są jako konwencjonalne parowe układy turbinowe (*CST*).

Niekonkurencyjność osiąganych wartości wskaźników efektywności energetycznej turbinowych układów napędowych, w porównaniu ze sprawnością spalinowych siłowni tłokowych, doprowadziły do podjęcia prac modernizujących konwencjonalne siłownie parowe. W ich wyniku główni producenci (*KHI - Kawasaki Heavy Industries* oraz *MHI – Mitsubishi Heavy Industries*) zaproponowali rozwiązania wykorzystujące obiegi złożone, o zbliżonych wartościach wskaźników efektywności energetycznej do siłowni z silnikami tłokowymi: *ART – Advance Reheat Turbine* firmy *KHI* oraz *UST - Ultra Steam Turbine -* firmy *MHI* [4, 74]. Producenci turbin parowych nie podjęli jednak prób mających na celu bezpośrednie pogłębienie odzysku energii odpadowej z turbinowych siłowni parowych, skupiając się głównie na zwiększaniu dostępnego spadku entalpii na stopniach turbiny, oraz zmniejszaniu strat wewnętrznych urządzeń realizujących obieg.

1.3.1. Konwencjonalne układy parowe

Schemat konwencjonalnego parowego turbinowego układu napędowego zbiornikowców *LNG*, składającego się z dwóch dwupaliwowych, opłomkowych kotłów, wytwarzających parę o ciśnieniu p=60-65 bar (6-6,5 MPa) oraz temperaturze pary przegrzanej $t_1=510-525$ °C, przedstawiono na rysunku 1.9. Kotły mogą być opalane paliwem ciekłym jak i gazowym. System zasilania kotła gazem składa się z dwóch dmuchaw (L/D - Low Duty), których przewód ssawny połączony jest z przestrzenią gazową zbiorników ładunkowych (Gas Dome). Zassane pary ładunku sprężane są w zależności od obciążenia kotłów od 0,1 – 0,8 bar (0,01-0,08 MPa), a następnie podgrzewane (*Boil Off Heater*) do temperatury 25-40°C. Wytworzona para wodna z kotłów kierowana jest do dwukadłubowego turbozespołu głównego, składającego się z turbiny wysokiego i niskiego ciśnienia sprzężonej z turbiną biegu wstecz. W zależności od liczby podgrzewaczy regeneracyjnych, w konwencjonalnej siłowni parowej stosuje się od dwóch do trzech upustów pary zasilających 3-5 podgrzewaczy regeneracyjnych. Liczba ta wynika z kosztów inwestycji skorelowanych z przyrostem sprawności obiegu w wyniku zastosowania kolejnego wymiennika ciepła [4, 37, 53, 54].

Para odlotowa z turbiny niskiego ciśnienia ulega skropleniu w skraplaczu podciśnieniowym, w którym poziom próżni w zależności od temperatury wody chłodzącej waha się od 90-95%. Ciepło skraplania przekazywane jest wodzie chłodzącej i usuwane za burtę. Kondensat ze skraplacza, podgrzany w regeneracyjnych wymiennikach ciepła, pompowany jest do kotła, ulegając podgrzaniu pobiera ciepło od pary upustowej bądź pary odlotowej z urządzeń pomocniczych siłowni.

Przykładem konwencjonalnego turbinowego układu napędowego jest siłownia zainstalowana na zbiornikowcu LNG o pojemności 138 tys. m³. Przedstawiony na rysunku 1.9 schemat cieplno-przepływowy układu energetycznego składa się z 2 kotłów parowych KHI, typu UME 65/50 o nominalnej wydajności 50 T/h i parametrach pary przegrzanej $p_1=60$ bar (6 MPa) i $t_1=525$ °C. Kontrola temperatury pary przegrzanej odbywa się za pośrednictwem zaworu sterującego strumieniem pary do schładzacza umieszczonego w walczaku wodnym, gdzie strumienie pary przegrzanej oraz ochłodzonej mieszają się w celu uzyskania pary o zadanej temperaturze. Wytworzona para przegrzana zasila turbozespół napędu głównego, dwa turbozespoły pradotwórcze o mocy 3450 kW oraz dwie pompy zasilające wody kotłowej. Turbozespół napędu głównego firmy Kawasaki serii UA 400 składa się z dwóch turbin w oddzielnych kadłubach: wysokiego ciśnienia (HP steam turbine) oraz turbiny niskiego ciśnienia (LP steam turbine) i osadzonej na tym samym wale turbiny biegu wstecz (Astern turbine). Turbina ta rozwija moc MCR 29500 kW. W rozwiązaniu tym zastosowano trzy upusty pary: wysokiego ciśnienia (HP Bleed - 19,5 barA) pobieranego za piątym stopniem turbiny wysokiego ciśnienia, zasilający system pary ochłodzonej (desuperheated steam), ciśnienia pośredniego (IP Bleed – 5 barA), pobieranego z rurociągu łączącego turbinę wysokiego i niskiego ciśnienia, zasilającego instalację pary odlotowej (exhaust steam), oraz niskiego ciśnienia (LP Bleed - 1,5 barA), pobieranego za trzecim stopniem turbiny niskiego ciśnienia.

Rys. 1.9 Uproszczony schemat konwencjonalnego turbinowego układu napędowego typu CST [4, 37]

Przedstawiony układ wyposażony jest w pięć podgrzewaczy regeneracyjnych zwiększających sprawność obiegu parowo-wodnego: baterię skraplania wyparownika podciśnieniowego chłodzonego kondensatem ze skraplacza głównego; skraplacz pary uszczelniającej (Gland Steam Condenser), odbierający ciepło skraplania od pary uszczelniającej oraz od pozostałości pary opuszczającej deaerator; podgrzewacza niskociśnieniowego zasilanego parą z upustu niskiego ciśnienia oraz kondensatem pochodzącym z odlotu podgrzewacza powietrza zasilającego kocioł; podgrzewacza mieszankowego (deaerator) oraz podgrzewacza wysokiego ciśnienia. Ostateczne podgrzanie wody zasilającej kocioł zachodzi w ekonomizerze, odzyskującym ciepło spalin wylotowych z kotła.

W prezentowanym rozwiązaniu siłowni zastosowano dwa obiegi parowe. Obieg główny pary z parą przegrzaną (tzw. obieg czysty) oraz obieg pary technologicznej/grzewczej, wytwarzanej w osobnym kotle (*LPSG* – Low Pressure Steam Generator) o ciśnieniu p=9 bar i temperaturze nasycenia (tzw. obieg brudny). Zastosowanie oddzielnego obiegu parowego dla systemu pary grzewczej ma na celu uniknięcie zanieczyszczenia obiegu głównego paliwem lub olejem w przypadku rozszczelnienia wężownic grzewczych lub podgrzewaczy.

W oparciu o dokumentację techniczną statku oraz raporty z prób stoczniowych sporządzono bilans energetyczny układu [4, 119], określając takie wielkości jak:

- godzinowe zużycie paliwa przez układ energetyczny;
- moc napędu głównego mierzoną na wale za przekładnią redukcyjną;
- moc czynną elektrowni okrętowej mierzoną na zaciskach prądnicy;
- zapotrzebowanie ciepła technologicznej pary nasyconej o ciśnieniu 9 bar, wyznaczone na podstawie zapotrzebowania na parę poszczególnych odbiorników.

Dysponowane wielkości umożliwiły wyznaczenie jednostkowego zużycia paliwa oraz sprawności układów:

- napędowego, przyjmując za strumień energii użytecznej moc napędu głównego statku, natomiast przyjęto, iż pozostałe strumienie energii umożliwiają realizację obiegu parowego wytwarzającego energię do napędu głównego,
- energetycznego, w którym za użyteczne przyjęto strumienie energii wykorzystanej do napędu głównego, energii elektrycznej mierzonej na zaciskach prądnicy oraz ciepła, niesionego przez parę nasyconą o ciśnieniu 9 bar.

Wyniki obliczeń zamieszczono w tabeli 1.1. Z wykonanych obliczeń wynika iż sprawność układu napędowego konwencjonalnej siłowni parowej wynosi około 0,283 (jednostkowe zużycie paliwa $g_e=296$ g/kWh) oraz 0,323 dla układu energetycznego ($g_e=258$ g/kWh).

Tab. 1.1 Wskaźniki efektowności energetycznej układu napędowego i elementów układu energetycznego w funkcji obciążenia napędu głównego zbiornikowca LNG

Obciążenie układu napędowego	[% MCR]	100	85	75	50	25
Godzinowe zużycie paliwa układu energetycznego	[kg/h]	8604	7643	6897	5734	3321
Moc napędu głównego	[kW]	29000	24700	21750	14530	7260
Moc zespołów prądotwórczych - na zaciskach prądnicy	[kW]	1450	1600	1570	1230	1900
Ciepło pary grzewczej/technologicznej	[kW]	2818	2010	1962	1798	1645
Jednostkowe zużycie paliwa układu napędowego	[g/kWh]	296	299	309	395	490
Sprawność efektywna napędu	[-]	0,2827	0,2798	0,2708	0,2118	0,1707
Jednostkowe zużycie paliwa układu energetycznego	[g/kWh]	258	269	272	326	307
Sprawność układu energetycznego	[-]	0,3234	0,3098	0,3066	0,2561	0,2721

Wartości jednostkowego zużycia paliwa maleją wraz ze wzrostem obciążenia układu napędowego. Ze względu na specyfikę obiektu, jakim jest siłownia parowa zbiornikowca *LNG* na bilans energetyczny ma wpływ także rodzaj paliwa zasilającego kocioł. Sprawność kotła opalanego paliwem ciekłym wynosi 87-89% natomiast dla paliwa gazowego 83-85 % [4, 5, 37, 119, 120].

1.3.2. Zaawansowane układy parowe (UST, ART)

Układ złożony z przegrzewem międzystopniowym (*ART* – Advanced Reheat Turbine firmy Kawasaki Heavy Industries)

Firma Kawasaki Heavy Industrie już w roku 1970 zwodowała pierwszy statek stosując układ przegrzewu międzystopniowego pary w celu zwiększenia sprawności układu napędowego. Do roku 1974 zbudowano 7 *VLCC* (Very Large Crud oil Carrier) (*DWT* – Dead Weight Tonnage) o nośności 222 tyś. ton i mocy napędu głównego 22000 kW, wyposażonych w turbinę główną typu UR315 oraz dwa kotły główne UFR produkujące parę przegrzaną o parametrach p_1 = 100 bar (10 MPa) oraz t_1 =525 °C. W roku 1976 do eksploatacji wszedł tankowiec *ULCC* (*Ultra Large Crude oil Carrier*) o nośności 420 tyś. DWT i mocy napędu głównego 33100 kW. Do napędu wykorzystano turbozespół UR450 oraz kotły główne UTR

produkcji *KHI*. Schemat układu energetycznego zbiornikowca przedstawiono na rysunku 1.10 [60, 61, 68, 85, 103, 114].

Rys. 1.10 Uproszczony schemat układu energetycznego typu ATR z turbozespołem typu URA i kotłem UTR-II [85]

W oparciu o doświadczenia w budowie i eksploatacji turbin *UR* oraz *UA* (ponad 200 turbin zainstalowanych na jednostkach pływających), w roku 2011 zbudowano i wprowadzono do eksploatacji pierwszy zbiornikowiec *LNG* wyposażony w siłownię parową typu *ART* z turbozespołem *URA*, będącym odpowiedzią firmy na inne alternatywne rozwiązania napędowe gazowców [85, 103, 114, 115]. Siłownia typu *ART* wyposażona jest w turbozespół parowy model URA przedstawiony na rysunku 1.11. Jest to dwukadłubowy turbozespół, składający się z turbiny wysokiego ciśnienia i średniego ciśnienia osadzonych na wspólnym wale, oraz turbiny niskiego ciśnienia wraz z turbiną biegu wstecz tworzących osobny wirnik. Para przegrzana o parametrach $p_1=120$ bar (12 MPa), $t_1=560$ °C wytwarzana jest w 2 kotłach wodnorurkowych UTR-II.

Rys. 1.11 Turbina URA: przekrój poprzeczny kadłuba wysokiego i średniego ciśnienia oraz widok turbiny wraz ze skraplaczem podciśnieniowym [61]

W układzie tym, ze względu na wyższe parametry pary świeżej możliwe jest zastosowanie siedmiu podgrzewaczy regeneracyjnych, odzyskujących ciepło skraplania pary pobieranej z pięciu zaczepów pary: dwa upusty z turbiny niskiego ciśnienia zasilające wyparownik chłodzony kondensatem oraz dwa stopnie podgrzewaczy niskociśnieniowych. Upust pary pośredniej pobieranej z rurociągu pomiędzy turbiną średniego ciśnienia oraz turbiną niskiego ciśnienia, zasilający podgrzewacz mieszankowo – odgazowujący (deaerator). Upust pary z turbinv średniego ciśnienia służy do podgrzewu wody W podgrzewaczu wysokociśnieniowym pierwszego stopnia. Drugi stopień podgrzewacza wysokociśnieniowego zasilany jest z upustu pary odlotowej z turbiny wysokiego ciśnienia przed wejściem tej pary do sekcji przegrzewacza wtórnego. Zastosowanie tak dużej liczby podgrzewaczy regeneracyjnych i uzyskana temperatura wody zasilającej na wlocie do kotła, umożliwia opcjonalne zastosowanie gazowego podgrzewacza powietrza (rekuperatora) zamiast ekonomizera. Innym opcjonalnym wyposażeniem podnoszącym sprawność układu napędowego jest prądnica wałowa podwieszana na przekładni napędu głównego.

Przedstawiona siłownia z turbiną URA 450 oraz dwoma kotłami o wydajności parowej D=57 T/h każdy, rozwija moc MCR 27000 kW przy 73 obrotach na minutę. Zgodnie z danymi producenta układ ten przy zastosowaniu prądnicy wałowej cechuje się dobowym zużyciem paliwa rzędu G=160 T/doba, co daje jednostkowe zużycie paliwa rzędu $g_e=246$ g/kWh. Należy zauważyć, że wielkości te uwzględniają już zużycie energii chemicznej zawartej w paliwie w celu pokrycia zapotrzebowania urządzeń pomocniczych na strumień energii elektrycznej oraz cieplnej [60, 61].

Układ złożony z przegrzewem międzystopniowym (*UST* – Ultra Steam Turbine firmy Mitsubishi Heavy Industries)

Firma Mitsubishi Heavy Industrie prowadziła prace nad podwyższeniem sprawności obiegu parowego równolegle do *KHI*. W rezultacie powstała koncepcja układu napędowego *UST*, będąca częścią większego projektu SAYAENDO, mającego na celu podwyższenie efektywności transportu skroplonego gazu *LNG* między innymi poprzez zastosowanie nowego kadłuba statku, poprawy izolacji termicznej zbiorników oraz zastosowaniu zmodernizowanego napędu parowego [47, 71]. Założenia koncepcji *UST* zbliżone są do rozwiązania *ART*. Schemat cieplno-przepływowy siłowni *UST* przedstawiono na rysunku 1.12. Podobnie jak dla rozwiązania firmy Kawasaki, *MHI* zastosowało podwyższone parametry pary świeżej stosując ciśnienie $p_1=100$ bar, oraz temperaturę pary $t_1=560$ °C. Zastosowano również przegrzew międzystopniowy pomiędzy turbiną wysokiego i średniego ciśnienia. Para opuszczająca przegrzewacz wtórny posiada parametry $p_1=20$ bar oraz $t_1=560$ °C [47, 71, 101].

Rys. 1.12 Schemat cieplno-przepływowy siłowni parowej typu UST z turbiną MR-II i kotłem MB [28]

Podobnie jak w rozwiązaniu *ART* z turbiną *URA*, model MR-II składa się z turbiny wysokiego i średniego ciśnienia tworząc jeden zespół wirnikowy. Dolot pary dla obu turbin znajduje się w centralnej części wału, dzięki czemu korzystniej rozkładają się obciążenia cieplne zarówno wału jak i kadłuba turbiny. W turbinie średniego ciśnienia zastosowano dodatkowo układ chłodzenia części wirnika za pośrednictwem pary odlotowej z pierwszego stopnia turbiny *HP* (460 °C), dzięki czemu zwiększono wytrzymałość elementów konstrukcyjnych na pełzanie. Ponadto kadłub turbiny średniego ciśnienia w obrębie dolotu pary z przegrzewacza wtórnego oraz pierwszych trzech stopni chłodzony jest parą o temperaturze 420 °C.

Turbina niskiego ciśnienia wraz z turbiną biegu wstecz tworzą jeden zespół wirnikowy umieszczony nad skraplaczem podciśnieniowym, do którego kierowana jest para odlotowa. Obydwa zespoły wirnikowe napędzają śrubę okrętową za pośrednictwem dwustopniowej przekładni zębatej, na której opcjonalnie może być podwieszona prądnica wałowa mogąca pracować zarówno w trybie *PTO (Power Take Off)* jak i *PTI* (Power Take In). Tryb pracy silnikowej prądnicy wałowej może być wykorzystany w przypadku, gdy konieczne jest uzyskanie maksymalnej mocy (100% *MCR*), i przy wyłączonym palniku przegrzewacza wtórnego.

W układzie UST zastosowano trzy upusty pary. Pierwszy zaczep regeneracyjny znajduje się na odlocie z turbiny wysokiego ciśnienia, a przed przegrzewaczem pary. Para ta zasila system pary grzewczej za pośrednictwem zaworów redukcyjnych oraz zewnętrznych schładzaczy natryskowych, w których strumień pary schładzany jest poprzez rozpylenie kondensatu. Drugi zaczep regeneracyjny znajduje się na odlocie pary z turbiny średniego ciśnienia i wykorzystywany jest do zasilania podgrzewaczy powietrza w kotle oraz podgrzewacza mieszankowego. Trzeci zaczep regeneracyjny znajduje się na turbinie niskiego ciśnienia i wykorzystywany jest do zasilania podgrzewacza niskiego ciśnienia oraz baterii wrzenia wyparownika podciśnieniowego.

Przedstawiony układ siłowni parowej projekt SAYAENDO z kotłami MB dla zbiornikowca *LNG* o pojemności 145 tyś. m3 i mocy maksymalnej pracy ciągłej (*MCR*) 30 MW charakteryzuje się jednostkowym zużyciem paliwa rzędu 248 g/kWh [61, 101]. W tabeli 1.2 zamieszczono sposoby, zakresy i efekty modernizacji siłowni parowej typu *UST* oraz informacje dotyczące globalnego zwiększenia sprawności siłowni w rezultacie jej modernizacji [51]. Pierwsze zamówienie na zbiornikowiec *LNG* z zainstalowanym układem napędowym *UST*, firma *MHI* otrzymała w 2011 roku. Statek S/S Pacific Arcadia [8, 109] wszedł do eksploatacji w październiku 2014 roku. Do końca 2015 firma otrzymała zamówienia na kolejnych 10 jednostek z układem *UST* [71, 109].

Sposób modernizacji	Zakres modernizacji	Efekt zmniejszenia jednostkowego zużycia paliwa
Podwyższenie ciśnienia pary	$60 \rightarrow 100 \text{ bar}$	4,60%
Podwyższenie temperatury przegrzewu pary	$510 \rightarrow 560 \ ^{\circ}\text{C}$	1,90%
Zastosowanie złożonego obiegu parowego	Zastosowanie przegrzewu międzystopniowego połączonego z podgrzewaniem regeneracyjnym wody zasilającej (zwiększenie liczby podgrzewaczy)	4,50%
Zwiększenie sprawności wewnętrznej turbiny	 Optymalizacja geometrii profili łopatkowych Modernizacja konstrukcji uszczelnień – zmniejszenie start wentylacji Minimalizacja oporów przepływu pary na zaworze manewrowym 	2,00%
Wykorzystanie zapasu obciążenia/mocy	Prądnica wałowa podwieszona na przekładni turbiny napędu głównego	2,00%
Suma		15,00%

Tab. 1.2 Zakresy i efekty modernizacji układów energetycznych typu UST [71]

1.3.3. Układ hybrydowy (STaGE)

Pod koniec 2014 roku firma MHI przedstawiła kolejną innowacyjną koncepcję mającą na celu zwiększenie efektywności energetycznej [112] transportu gazu. Projekt *STaGE* (Steam Turbine and Gas Engine), którego układ napędowo – energetyczny przedstawiono na rysunku 1.13, stanowi rozwinięcie projektu SAYAENDO *UST*.

W nowym rozwiązaniu zastosowano dwuśrubowy układ napędowy, w którym jeden wał śrubowy połączony jest kinematycznie za pomocą przekładni z turbiną parową. Druga śruba napędzana jest przez przekładnię elektryczną i układ *DFD*E, składający się z trzech zespołów prądotwórczych z dwupaliwowymi silnikami o zapłonie samoczynnym, wytwórni Wärtsila, typu 6L50DF o mocy 5850 kW każdy.

Rys. 1.13 Hybrydowy układ napędowy zbiornikowca LNG projektu STaGE firmy MHI [42]

Połączenie obydwu układów pozwala na znaczny odzysk energii odpadowej z silników spalinowych i wykorzystaniu jej w układzie regeneracyjnym podgrzewania wody kotłowej w parowej części układu napędowo-energetycznego. Według producenta wykorzystanie układu *STaGE* w połączeniu z nową konstrukcją kadłuba oraz dodatkową osłoną zbiorników zmniejszającą opory części nawodnej kadłuba, umożliwia zwiększenie efektywności energetycznej o około 20% względem układu SAYAENDO – *UST* [42].

Rozwiązanie to wymaga jednak pewnej modyfikacji układu utylizacji oparów *LNG BOG*. Ze względu na zastosowanie silników czterosuwowych konieczne jest zastosowanie układu sprężania *BOG* o ciśnieniu na wyjściu ze sprężarek około 5 bar, aby umożliwić zasilanie silników spalinowych gazem wraz z powietrzem doładowującym. W tym celu zastosowano dodatkowe dwustopniowe sprężarki *L/D* wraz z podgrzewaczami.

W roku 2015 firma *MHI* otrzymała pierwsze zamówienia na dwie jednostki o pojemności 177 tyś. m³, które zgodnie z kontraktem weszły do eksploatacji w 2018 roku [44, 109, 112].

1.4. Analiza porównawcza turbinowych układów napędowych zbiornikowców LNG

Szybki rozwój nowych technologii, związanych z zasilaniem silników o zapłonie samoczynnym paliwem gazowym spowodował szeroką ekspansję alternatywnych rozwiązań układów napędowych dla zbiornikowców *LNG*.

Konwencjonalne parowe układy turbinowe (CST) pomimo szeregu zalet takich jak niezawodność, podatność do automatyzacji, podatność obsługowa i remontowa, niskie koszty

utrzymania/obsługi, prostota układu zasilania kotłów gazem oraz możliwość opalania ich w dowolnej proporcji z paliwem ciekłym, możliwość zasilania kotłów paliwem niskiej jakości nie są w stanie konkurować pod względem sprawności z takimi układami jak *DFD*E ($\eta_{DF} = 0,42$) czy układami wyposażonymi w silniki wolnoobrotowe ($\eta_{SSD} = 0,48$) [3, 4, 10, 38, 51, 74].

W tabeli nr 1.3 przedstawiono podstawowe cechy omówionych parowych układów napędowych. Zestawiono dane dla opisanych dwóch układów *CST* (z początku lat 90 ubiegłego wieku oraz z początku lat 2000) z różnymi liczbami podgrzewaczy regeneracyjnych oraz zaawansowane układy z przegrzewem międzystopniowym [4, 44, 109, 112 119, 120].

	CST -1990	CST -2003	ART - KHI	UST - MHI	STaGE- MHI
Klasa /pojemność	CST - 1990 125 tyś. m ³	CST - 2003 138 tyś. m ³	ART -2011 177 tyś. m ³	UST - 2014 145 tyś. m ³	STaGE 2018 177 tyś. m ³
Obieg	CR - REGENERATIVE	CR - REGENERATIVE	CR – REHEAT AND REGENERATIVE	CR – REHEAT AND REGENERATIVE	CR - REHEAT AND REGENERATIVE+ OTTO (DFDE)
Kotly parowe	2x Mitsui MSD 40 ER	2x KHI - UME 65/50	2x KHI - UTR-II	2x MHI - MB	MHI - MB
Parametry pary świeżej	60 bar / 515 °C	61 bar / 525 °C	120 bar / 560 °C	100 bar / 560 °C	100 bar / 560 °C
Entalpia pary świeżej	3458 kJ/kg	3481 kJ/kg	3507 kJ/kg	3526 kJ/kg	3526 kJ/kg
Ciepło parowania	1571 kJ/kg	1564 kJ/kg	1194 kJ/kg	2725 kJ/kg	2725 kJ/kg
Ciśnieni pary wtórnej	xxxxxxx	xxxxxxxx	Brak danych / 560 °C	20 bar /560 °C	20 bar /560 °C
Entalpia pary wtórnej	xxxxxxx	xxxxxxxx	Brak danych	3601 kJ/kg	3601 kJ/kg
Wydajność parowa kotłów	2x 40 T/h	2x 65 T/h	2x 54 T/h	Brak danych	Brak danych
Model turbiny	MHI - MS24-2	KHI - UA 400	KHI - URA 450	MHI- MR36-2	MHI- MR-II + WARTSILA 3x 6L50DF
Rodzaj turbin liczba stopni/typ stopni	HP 1x Curtis 7 Rateau LP - 4 Rateau 4 Reaction	HP - 1 Curtis, 8 Rateau LP - 4 Rateau 4 Reaction	HP - 10 stages IP – brak danych LP - 10 stages	HP - 1 Curtis 5 Rateau IP - 6 Rateau LP - 4 Rateau 4 reaction	HP - 1 Curtis 5 Rateau IP - 6 Rateau LP - 4 Rateau 4 reaction
Moc napędu głównego	oc napędu 17140 kW 29500 kW		27000 kW	30000 kW	ok 30000 kW
Liczba upustów regeneracyjnych	2 (IP/LP)	3(HP/IP/LP)	3(HP/IP/LP)	3(HP/IP/LP)	3(HP/IP/LP)
Próżnia w skraplaczu	722 mmHg	722 mmHg	722 mmHg	722 mmHg 722 mmHg	
Liczba podgrzewaczy regeneracyjnych	3	5	7	4 / 6	Brak danych
Temperatura wody zasilającej kocioł	138 °C	145 °C	Brak danych	138 °C	138 °C
Dobowe zużycie paliwa	130 T/doba	200 T/doba	160 T/doba	178 T/doba	Brak danych
Jednostkowe zużycie paliwa	310 g/kWh	285 g/kWh	246 g/kWh	248g/kWh	~230 g/kWh
Jednostkowe zużycie pary przy MCR	4,67 kg/kWh	4,07 kg/kWh	3,70 kg/kWh	3,15 kg/kWh	b/d
System pary pomocniczej	Common – desuperheated steam	LPSG – Low pressure steam generator	LPSG - LPSG - v pressure steam generator Low pressure steam generator Common - desuperheated		Common - desuperheated steam
Konfiguracje OSEE	1x T/G 2x D/G	2x T/G 1x D/G	1x T/G 2x D/G + shaft generator	2x T/G 1x D/G + shaft generator	3x D/G

Tab. 1.3 Rozwój cech i parametrów pracy głównych układów napędowych zbiornikowców *LNG* z turbozespołami parowymi [4]

Odpowiedzią głównych producentów okrętowych turbin parowych na zmieniający się rynek jest wprowadzenie nowych układów, które w oparciu o podobne rozwiązania mają na celu zwiększenie efektywności energetycznej układu napędowego jak również efektywności transportu. W odniesieniu do parowego turbinowego układu napędowego cel ten realizowany jest dwukierunkowo.

Ponieważ największym źródłem strat układu parowego jest ponowne skraplanie pary odlotowej z turbiny, główne wysiłki skoncentrowane są na doprowadzeniu do czynnika roboczego jak największego strumienia ciepła.

Drugim kierunkiem działań podejmowanych w celu zwiększenia sprawności obiegu jest stosowanie dodatkowych podgrzewaczy wody zasilającej kocioł, dzięki którym możliwe jest odzyskanie pewnej części ciepła traconego w procesie skraplania.

Z analizy wyników wykonanych obliczeń strat obiegu parowego wynika, że dla konwencjonalnego turbinowego układu parowego aż do 60% strat obiegu związane jest ze skraplaniem pary opuszczającej turbinę w skraplaczu. Energia ta ze względu na parametry pary odlotowej (p=0,05 bar, t=35 °C x=0,85) jest niskiego poziomu energetycznego.

Jednak ze względu na wielkość strumienia energii odprowadzanego z układu z ciepłem chłodzenia skroplin, dalsze prace nad zwiększeniem sprawności turbinowego, parowego układu energetycznego zbiornikowca, przy współczesnym stanie technologii, powinny być skierowane na rozwój sposobów odzysku ciepła odpadowego z układu.

1.5. Alternatywne układy napędowe zbiornikowców LNG

Turbinowe układy napędowe przez szereg lat pozostawały jedyną dostępną opcją ze względu na możliwość wykorzystania par wrzącego ładunku do celów napędowych. Trend ten jednak uległ zmianie w roku 2004, kiedy do eksploatacji zaczęły wchodzić zbiornikowce wyposażone w alternatywne układy napędowe. Do najpowszechniejszych należy zaliczyć rozwiązanie z przekładnią elektryczną, do napędu którego zastosowano silniki dwupaliwowe o zapłonie samoczynnym - DFDE a na dalszych etapach rozwoju trójpaliwowe TFDE oraz rozwiązania dwusuwowymi silnikami wolnoobrotowymi zasilanymi Z paliwem pozostałościowym. Dla tego ostatniego rozwiązania konieczne jednak było stosowanie systemu ponownego skraplania gazu odparowującego w sposób naturalny. Są to układy napedowe DRL.

W latach 2006-2016 do eksploatacji weszło aż 123 jednostek wyposażonych w siłownie typu DFDE/TFDE co stanowiło 30% populacji układów napędowych zbiornikowców (Rys. 1.3). W okresie tym zwodowano także 146 statków z parowym napędem turbinowym, z czego zaledwie 19 jednostek w latach 2010-2015, których część wyposażona była w układy napędowe ART/UST [113]. W latach 2005-2010 zwodowano także 45 jednostek z układami typu DRL. Obniżki cen gazu (Rys.1.2) [112], spowodowały zaprzestanie budowy nowych jednostek tego typu oraz podjęcie prac rozwojowych nad modyfikacja istniejących jednostek celem przystosowania ich do zasilania układu napędowego statku parami ładunku BOG. Pierwszy statek poddano modyfikacji w drugim kwartale 2015 roku (M/V Rasheeda) [107, miarę rozwoju technologicznego zaczęto wprowadzać jednostki 108, 113]. W z dwupaliwowymi sinikami wolnoobrotowymi. Przykładem jest silnik GI (gas injection) firmy MAN, którego moc w zależności od typoszeregu i liczby cylindrów może wynosić 3,5 - 82 MW. Pierwszy zbiornikowiec wyposażony w silniki ME-GI wszedł do eksploatacji w 2015 roku [37, 107, 108, 113]. Pierwsza jednostka wyposażona w wolnoobrotowe silniki *xDF*, firmy WinGD weszła do eksploatacji w 2017 roku.

1.5.1. Układy z przekładnią elektryczną (DFDE)

W roku 2004 zwodowano i poddano próbom pierwszy zbiornikowiec *LNG* z napędem *DFDE*. Rozwiązanie to znane było już wcześniej i powszechnie stosowane na statkach pasażerskich oraz promach samochodowych, na których rozmiary siłowni limitowały wysokość silnika głównego, z tego względu stosowano średnio-obrotowe silniki do napędu głównego. Innowacyjne jednak, jak dla okrętownictwa, było zastosowanie silników dwupaliwowych. Silniki te przystosowane są do spalania zarówno paliwa płynnego jak i gazowego. Rozwiązanie to jest adaptacją układów elektrowni lądowych w okrętownictwie.

Układy napędowe (Rys.1.14) składają się z zespołów prądotwórczych oraz przekładni elektrycznej, napędzając wał ze śrubą o stałym skoku za pośrednictwem przekładni redukcyjnej. Alternatywnym rozwiązaniem są układy, w których zastosowano pędniki gondolowe. Silniki elektryczne napędu głównego zasilane są z rozdzielnicy głównej za pośrednictwem transformatorów obniżających napięcie a następnie poprzez falowniki tyrystorowe w celu dopasowania częstotliwości prądu zasilania do prędkości obrotowej.

Rys. 1.14 Układ napędowy z przekładnią elektryczną (DFDE/TFDE) [117]

Podstawę napędu *DFDE* stanowią dwupaliwowe średnio obrotowe, wysokoprężne silniki spalinowe, realizujące obieg Otto. W większości rozwiązań gaz dostarczany jest do komory spalania za pośrednictwem zaworów umiejscowionych na dolocie powietrza doładowującego do komory spalania pod ciśnieniem około 0,5 bar (0,05 MPa) wyższym od ciśnienia doładowania silnika [121]. Gaz tworzy z powietrzem jednorodną mieszaninę zanim zostanie podany do komory spalania. Ze względu na niskie właściwości samozapłonu gazu konieczne jest doprowadzenie energii do gazu, aby zainicjować proces spalania. Realizowane jest to za pomocą wtrysku niewielkiej ilości paliwa pilotującego do komory spalania. Ilość gazu

podawanego do komory spalania kontrolowana jest poprzez zmianę czasu otwarcia zaworu gazowego.

Deklarowana przez producentów sprawność silników spalinowych waha się w przedziale $\eta_e = 0,45-0,48$. Pomimo relatywnie wysokiej sprawności silników, skomplikowany układ napędowy skutkuje dodatkowymi stratami związanymi z konwersją i transmisją energii. Straty poszczególnych elementów układu przedstawiono w tabeli 1.4 (str.33). Sprawność układu napędowego po uwzględnieniu strat wynosi około $\eta_{DE} = 0,39-0,41$ [2, 3, 21, 107, 108, 110].

1.5.2. Układy z ponownym skraplaniem gazu (DRL)

W roku 2007 do eksploatacji weszły pierwsze statki wyposażone w siłownie typu *DRL*. Układ napędowy tych jednostek składa się z dwóch wolnoobrotowych dwusuwowych silników o zapłonie samoczynnym, sprzęgniętych za pośrednictwem sprzęgła z osobno pracującymi śrubami napędowymi (Rys 1.15). Układy te nie są przystosowane do utylizacji *BOG*. Silniki mogą być zasilane jedynie paliwem ciekłym (*MDO/HFO*). Ze względu na konieczność utylizacji par wrzącego ładunku statki te wyposażone są dodatkowo w układy ponownego skraplania gazu (Reliquefication plant). Ze względu na niską temperaturę wrzenia gazu ziemnego (około -163 °C dla metanu), układy te są wysoce energochłonne. Z ekonomicznego punktu widzenia układy napędowe typu *DRL* mają racje bytu jedynie przy wysokiej cenie gazu. Ze względu jednak na obniżające się ceny na międzynarodowych rynkach w latach 2009-2010 zaprzestano budowy statków z siłowniami typu *DRL* a obecnie prowadzone są prace nad modyfikacją układu napędowego i przystosowaniem silników do zasilania ich parami ładunku.

Rys. 1.15 Układ napędowy z ponownym skraplaniem gazu DRL [37]

Sprawność układu napędowego typu *DRL* według producentów osiągała wartość η_e =0,47. Konieczność ponownego skraplania gazu, oraz zapotrzebowana w tym celu energia elektryczna, znacznie zwiększają dobowe zużycie paliwa przez całą siłownię [2, 3, 8, 33, 37, 61].

1.5.3. Układy z dwupaliwowymi silnikami wolnoobrotowymi (DF SSD)

Dwaj główni producenci wolnoobrotowych silników dwusuwowych, MAN Diesel and Turbo oraz Firma WinGD, posiadają w swoich portfolio dwusuwowe wolnoobrotowe silniki zasilane gazem [46, 83, 107, 108, 110, 111]. Firma MAN realizuje zasilanie gazem silnika poprzez wtrysk gazu (ciśnienie 300 bar), realizując obieg Diesla, natomiast Wärtsila zaproponowała rozwiązanie realizujące obieg Otto, dla którego gaz podawany jest pod ciśnieniem 17 bar do komory spalania i sprężany wraz z powietrzem doładowującym. Zapłon mieszaniny paliwowo powietrznej realizowany jest poprzez wtrysk do komory spalania niewielkiej ilości dawki pilotującej paliwa ciekłego (*MDO/HFO*) inicjującej zapłon.

W roku 2016 do eksploatacji weszły pierwsze zbiornikowce *LNG* wyposażone w dwupaliwowe wolnoobrotowe silniki firmy MAN Diesel and Turbo, których układ napędowy wraz z układem zasilania gazem przedstawiono na rysunku 1.16. Napęd główny statku o pojemności 178 000 m³ składa się z dwóch zespołów napędowych *5G70ME-GI*, sprzęgniętych za pośrednictwem sprzęgła hydraulicznego z dwoma śrubami napędowymi. Silniki napędu głównego zasilane są sprężonym gazem o ciśnieniu od 150-300 bar w zależności od obciążenia. Silniki mogą pracować w trzech trybach: Fuel Mode – zasilane wyłącznie paliwem ciekłym (*HFO/MDO*), Gas mode – zasilane głównie paliwem gazowym z niewielką ilością paliwa ciekłego (*HFO/MDO*) jako dawką pilotującą, oraz Sheare mode – dla którego możliwa jest zmiana proporcji dawki pilotującej od 5-50%.

Sprawność zespołu napędowego według producenta wynosi η_e =0,517. Ze względu na zastosowanie prostego, bezpośredniego systemu (straty na linii wału około 1%), przyjąć można, iż sprawność całego układu napędowego wyniesie η_{MEGI} =0,51 [17, 21, 37, 107, 108, 116, 122].

Rys. 1.16 Układ napędowy DF SSD, z wolno obrotowymi silnikami firmy MAN [116]

Szacuje się, że zapotrzebowanie energii układu napędowego zbiornikowca o pojemności 160000 m³ wyposażonego w dwa silniki typu *6G70ME-GI* będzie znajdowało się poniżej

NBO (Natural Boil Off) w zakresie obciążeń 0-80% dla *BOR* (Boil Off Rate) - 0,1 - 0,123 %/dobę) [122]. Ponadto elektrownia okrętowa została wyposażona także w silniki dwupaliwowe zwiększając możliwości utylizacyjne *BOG* na potrzeby siłowni.

1.5.4. Układy kombinowane (COGAS/COGES)

Towarzystwo klasyfikacyjne Lloyd Register of Shipping w roku 2014 przeprowadziło analizę nowego rozwiązania układu napędowego dla zbiornikowców *LNG*. Projekt koncepcyjny kombinowanego układu *COGAS* (Combined Gas And Steam) (Rys. 1.17) opracowany przez firmę Dalian Shipbuilding Industry Company (*DSIC*) zakłada połączenie parowej siłowni turbinowej z turbinową siłownią gazową. W układzie tym główną jednostką napędową jest turbozespół spalinowy, która poprzez przekładnię elektryczną napędza pędnik. W rozwiązaniu tym turbina parowa wraz z kotłem utylizacyjnym stanowi układ odzysku ciepła ze spalin wysokotemperaturowej turbiny gazowej. Wytworzona energia poprzez okrętową sieć energoelektryczną przekazywana jest do pędnika. Możliwe jest także zastosowanie napędu mechanicznego, co jednak komplikuje zarówno układ sterowania prędkością obrotową wału, układ i rozmieszczenie mechanizmów w siłowni, jak również konieczność stosowania nawrotnej przekładni mechanicznej.

Rys. 1.17 Kombinowany układ napędowy COGES [98]

Zastosowanie połączonego obiegu turbiny gazowej oraz parowej (Brayton-Rankine) umożliwia zwiększenie sprawności cieplnej całego układu o 10% względem samej turbiny gazowej. Dzięki wykorzystaniu utylizacji ciepła, siłownie typu *COGES* osiągają sprawność układu napędowego $\eta_{COGES}=0,42$ [11, 14, 26, 40, 98, 102, 104].

1.6. Ocena kryterialna układów napędowych

Układy napędowe statków dobierane są ze względu na następujące kryteria [16, 22, 37]:

Ekonomiczne

I.

- 1. Koszty inwestycji
- 2. Koszty eksploatacji
- II. Energetyczno-emisyjne
 - 1. Emisja związków szkodliwych NO_x, SO_x, CH,
 - 2. Emisja CO, CO_2
 - 3. Sprawność energetyczna
- III. Eksploatacyjne
 - 1. Utylizacja BoG
 - 2. Niezawodność
 - 3. Redundancja

Głównym kryterium wyboru rozwiązania układu napędowego przez armatorów jest kryterium ekonomiczne (zużycie paliwa) oraz kryterium energetyczno-emisyjne (emisja związków szkodliwych, jak również sprostanie współczesnym normom emisji spalin). Analizując zamówienia stoczniowe widać, iż najczęściej zamawiane są układy o wysokiej sprawności (Tab. 1.4), a w rezultacie o niższej emisji ditlenku węgla (Tab. 1.5) [2, 3, 16, 17, 37, 46, 77, 83, 102, 112, 116].

Tab. 1.4 Sprawność układów napędowych i poszczególnych elementów łańcucha napędowego [37]

Sprawność energetyczna układów napędowych											
CST		Reheat Steam Plant		DRL		DF SSD -MEGI		DFDE/TFDE		COGES	
Kotły Turbina	0,9	Kotły Turbina	0,92	Silnik 2s	0,48	Silnik 2s (DF)	0,517	Silnik 4s (DF)	0,47	Turbina gazowa	0,46
główna	0,35	główna	0,46	Linia wału	0,99	Linia wału	0,99	Alternator Transfor.	0,98	Alternator Transfor.	0,98
Przekładnia	0,98	Przekładnia	0,98					/Falownik	0,96	/Falownik	0,96
Linia wału	0,99	Linia wału	0,99					PEM	0,98	PEM	0,98
								Przekładnia	0,98	Przekładnia	0,98
								Linia wału	0,99	Linia wału	0,99
Sprawność		Sprawność		Sprawność		Sprawność		Sprawność		Sprawność	
układu	0,306	układu	0,411	układu	0,475	układu	0,512	układu	0,420	układu	0,411

Tab. 1.5 Emisja ditlenku węgla oraz tlenków azotu i siarki dla analizowanych układów napędowych [37]

	NO _X	SO _X	CO ₂
Układ napędowy	[g/kWh]	[g/kWh]	[g/kWh]
CST (50/50 BOG/HFO)	1	11	900
Steam Reheat (GAS ONLY)	1	0	500
DRL (HFO)	17	7,7	580
DF-SSD ME-GI (BOG)	10,1	0,88	446
DFDE/TFDE (BOG)	1,3	0,5	480
COGES (BOG)	2,5	0	480

W tabeli 1.6 dokonano syntezy cech jakościowych konfrontowanych układów napędowych zbiornikowców *LNG*. Z analizy wynika iż układy wyposażone w dwupaliwowe silniki wolnoobrotowe spełniają większość wymagań obecnie stawianych układom napędowym. Na chwilę obecną, ze względu iż jest to nowa technologia dla okrętownictwa, niepotwierdzona jest ich niezawodność. Zastosowano jednak w nich redundancje napędu poprzez zastosowanie dwuśrubowego układu połączonego z jednostkami napędowymi za pośrednictwem sprzęgieł.

Układy *DFDE/TFDE* są eksploatowane od blisko dekady, charakteryzując się relatywnie wysoką sprawnością, wymagają one jednak układu oczyszczania spalin w celu spełnienia norm emisji NO_x TIER III podczas zasilania paliwem ciekłym, a wynikającym z wymagań konwencji MARPOL (aneks VI) [66]. Obarczone są także wysokimi kosztami związanymi z rutynowymi przeglądami. Dane z eksploatacji wskazują, że ich niezawodność jest znacznie niższa od układów parowych.

Turbinowe układy parowe pomimo niskiej emisji związków szkodliwych obarczone są wysoką emisją CO_2 i niższą sprawnością. Pozostałe zalety jak niezawodność i niskie koszty obsługi nie są wstanie zrekompensować wydatków związanych ze zużyciem paliwa.

		Kryterium ekologiczne	Sprawność cieplna	Układ paliwowy	Niezawodność	Koszty
Układy parowe	1. 2. 3.	Spełnia TIER III (GAZ) Konieczne SCR dla TIER III (HFO) Wysoka emisja CO ₂	η_{CST} = 0,30 η_{reheat} =0,41	3 tryby pracy: Zasilanie gazem Zasilanie podwójne Zasilanie paliwem ciekłym	Wysoka niezawodność	Niskie koszty eksploatacyjne Duże zużycie paliwa
DFDE	1. 2.	Spełnia TIER III (GAZ) Konieczne SCR dla TIER III (paliwo ciekłe)	η _{DE} = 0,42	2 tryby pracy: Zasilanie paliwem ciekłym Zasilanie gazem z dawką pilotową	Niezawodność <układów parowych</układów 	Wysokie koszty przeglądów i napraw ZS
DRL	1. 2.	EGR or SCR for TIER III (HFO) Niska emisja CO ₂	η _{DRL} = 0,47	Brak możliwości utylizacji BoG do celów napędowych	Niezawodność <układów parowych</układów 	Wysokie koszty przeglądów i napraw SG, Duże obciążenie elektrowni
DF SSD	1. 2.	Konieczny EGR dla TIER III Niska emisja CO ₂	η _{MEGI} = 0,51	2 tryby pracy: Zasilanie paliwem ciekłym Zasilanie gazem + dawka pilotowa	Niezawodność nieznana	Wysokie koszty przeglądów i napraw SG
COGES	1.	Spełnia TIER III (gas/MGO)	η_{COGAS} = 0,41	2 tryby pracy: Zasilanie paliwem ciekłym Zasilanie gazem + dawka pilotowa	Wysoka niezawodność	Koszty eksploatacyjne wyższe od układów parowych

Tab. 1.6 Porównanie cech jakościowych konfrontowanych układów napędowych zbiornikowców LNG [37]

Z analizy portfela zamówień stoczniowych wynika, iż preferowaną opcją przez armatorów na chwilę obecną pozostaje układ *DF SSD*. Wynika to z podstawowej zalety nad układami parowymi *(CST)* jaką jest znacznie wyższa sprawność układu oraz wyższa dzienna stawka czarteru. Równie istotnym warunkiem wyboru tego układu pozostaje emisja związków

szkodliwych oraz CO_2 . Analizując zamówienia stoczniowe, jak również charakterystykę poszczególnych układów, wnioskować można iż w niedalekiej przyszłości preferowaną opcją pozostanie układ *DF SSD*, ze względu na wysoką sprawność, a tym samym relatywnie niską emisję CO_2 oraz prostotę układu napędowego. Rozwiązanie to, ze względu na połączenie cech kilku układów, daje dużą elastyczność utylizacji par ładunku *BOG*.

Ze względu na szereg kluczowych wad układy parowe są stopniowo wypierane przez alternatywne układy napędowe. Rozwiązania te nie są jednak w stanie konkurować z systemami turbinowymi ze względu na niezawodność oraz koszty utrzymania ruchu, co potwierdzają dane z eksploatacji [120, 121, 122, 123]. Ponadto sprawność energetyczna najnowszych rozwiązań układów turbinowych zbliżają się do wartości sprawności układów wyposażonych w silniki spalinowe, ustępując jednak nadal miejsca układom z wolnoobrotowymi silnikami o zapłonie samoczynnym (*DF SSD*). Układy parowe ze względu na szereg zalet pozostają preferowaną opcją niektórych armatorów dla statków operujących w długoterminowym czarterze, gdzie głównym kryterium pozostaje niezawodność, celem utrzymania stałego łańcucha wykonania zadania transportowego.

Wysiłki producentów turbinowych układów napędowych, aktualnie koncentrują się na poprawie sprawności obiegu oraz jego elementów konstrukcyjnych, celem zwiększenia konkurencyjności turbinowych układów parowych.

1.7. Analiza literatury – podsumowanie

Turbinowe siłownie parowe ewoluując na przestrzeni lat dokładnie przebadano oraz opisano w literaturze zarówno krajowej [2, 3, 4, 5, 7, 14, 12, 18, 19, 29, 30, 34, 39, 53, 54, 55, 59, 67, 69, 75, 76, 88, 89, 95, 102,], jak i zagranicznej [9, 16, 20, 22, 23, 27, 40, 44, 47, 50, 51, 52, 60, 61, 68, 70, 71, 73, 74, 85, 93, 101, 115]. Jednakże, poza nielicznymi publikacjami naukowymi należy podkreślić brak literatury traktującej o najnowszych rozwiązaniach okrętowych parowych układów turbinowych, z obiegami złożonymi i kombinowanymi o najwyższych sprawnościach.

Współcześnie turbinowe napędy stanowią niewielki procent mocy zainstalowanej na statkach floty handlowej. Układy te zostały całkowicie wyparte z nowobudowanych jednostek transportowych. Jedynym wyjątkiem pozostaje flota zbiornikowców *LNG*, z której w skutek rozwoju technologii zasilania spalinowych siłowni tłokowych paliwem gazowym również są sukcesywnie wypierane. Jak wskazano w przeprowadzonej analizie jedynie 12% [4, 37, 111] zamówionych jednostek, na lata 2017-2020, wyposażone miało być w turbinowe napędy parowe. Podstawową przyczyną takiego stanu rzeczy jest niewystarczająca sprawność energetyczna tych układów [4, 5, 37].

Na przestrzeni lat rozwoju turbinowych układów parowych, zarówno morskich jak i lądowych systemów energetycznych wykształciły się dwie główne metody zwiększania sprawności cieplnej turbinowych instalacji parowych:

- 1. Zwiększenie dysponowanego spadku entalpii w zespole turbinowym poprzez:
 - zwiększanie parametrów pary świeżej [4, 34, 53, 54, 61, 72, 73, 75, 76, 88, 93],
 - obniżanie ciśnienia pary odlotowej z zespołu turbinowego [3, 4, 18, 19, 20, 27, 34, 54, 75].

- 2. Karnotyzację złożonego obiegu parowego, polegającą na:
 - podgrzewaniu wody zasilającej i stosowanie w tym celu zaczepów regeneracyjnych [4, 13, 18, 19, 23, 52, 53, 59, 72, 75, 89, 92],
 - stosowaniu międzystopniowego wtórnego przegrzewania pary roboczej [4, 18, 19, 53, 54, 59, 68, 73, 74, 76, 93, 99].

W okrętownictwie zastosowanie znalazł konwencjonalny układ parowy, którego parametry opisano w rozdziale 1.3.1. Układy te na przełomie wieku XX i XXI stanowiły standard, będącym kompromisem pomiędzy kosztami inwestycyjnymi oraz eksploatacyjnymi. [4, 5, 53, 37]. W wyniku rozwijających się technologii zastosowania LNG do napędu statków oraz szybkiej ekspansji układów alternatywnych wznowiono prace rozwojowe zmierzające do poprawy sprawności turbinowych układów napędowych [42, 47, 60, 61, 68, 71,]. W wyniku tych prac powstały zaawansowane układy wykorzystujące podwyższone parametry pary świeżej oraz przegrzew międzystopniowy, co nie stanowiło nowości dla morskich układów turbinowych, jednak nie były one wcześniej stosowane na zbiornikowcach LNG. Ponadto, zastosowanie znalazło szereg innych rozwiązań mających na celu zmniejszenie strat cieplnych układów, poprzez zastosowanie zoptymalizowanych geometrycznie profili łopatkowych, modernizację uszczelnień, zmniejszenie oporów rurociągów oraz zaworów, w tym głównego zaworu manewrowego, poprawę izolacji turbiny poprzez zastosowanie chłodzenia kadłuba parą, czy zastosowanie lepszych materiałów izolacyjnych elementów układu. Zastosowanie powyższych modyfikacji znacząco wpłynęło na poprawę sprawności turbinowych układów parowych dorównując układom typu TFDE/DFDE [1, 4, 5, 37, 47, 60, 62, 68, 71].

W drugiej dekadzie XXI w. zarówno firma MAN oraz WinGD zaprezentowały swoje rozwiązania układów napędowych wykorzystujące dwupaliwowe silniki wolnoobrotowe. Układy te wyposażono także w dwupaliwowe zespoły prądotwórcze oraz układ ponownego skraplania par wrzącego ładunku, co dodatkowo zwiększa ich atrakcyjność oraz możliwości eksploatacyjne. Deklarowane sprawności energetyczne tych układów przewyższają wielkość 0,5 [37, 44, 107, 108, 110, 117].

Odpowiedzią firmy *MHI* jest propozycja układu napędowego *STaGE*. Firma ta zmieniła swoją politykę proponując zastosowanie układu hybrydowego, w którym system parowy stanowiłby część układu służącemu głębokiej utylizacji ciepła odpadowego części siłowni z tłokowymi silnikami spalinowymi, ale z niego nie zrezygnowała [4, 37, 42, 44].

W literaturze obecnie coraz częściej występują doniesienia, proponujące zastosowanie układów z turbinami w celu utylizacji ciepła odpadowego w obiegach binarnych, z zastosowaniem turbin parowych bądź nisko-temperaturowych obiegów *ORC* [25, 56, 57, 82, 84, 97].

Współczesne kierunki badań praktycznie zupełnie nie zauważają możliwości utylizacji największego źródła dyssypacji energii w siłowni parowej, jakim jest ciepło skraplania pary, wyprowadzane z obiegu w skraplaczu głównym. Przyczyną tego między innymi jest niski poziom energetyczny tego źródła – niska temperatura oraz ciśnienie. Niniejsza rozprawa jest próbą rozpoznania tak postawionego problemu badawczego.

2. SFORMUŁOWANIE PROBLEMU BADAWCZEGO

Problematyka związana z poprawą sprawności turbinowych siłowni parowych pozostaje do dnia dzisiejszego zagadnieniem otwartym. Siłownie te, dzięki szeregowi zalet, poza szerokim zastosowaniem w energetyce lądowej (elektro-ciepłownie), do dnia dzisiejszego znajdują zastosowanie we współczesnych układach napędowych zbiornikowców *LNG* oraz jednostek militarnych i specjalnych.

2.1. Geneza problemu badawczego

Turbinowe układy napędowe od lat 70-tych ubiegłego wieku, były stopniowo wypierane przez układy wyposażone w silniki o zapłonie samoczynnym, ze względu na ich wyższą sprawność cieplną. Jednak dzięki podatności na zasilanie paliwem gazowym pozostały w dalszym ciągu wiodącym rozwiązaniem dla układów napędowych zbiornikowców *LNG*.

Dla zbiornikowców *LNG* pewnego rodzaju kanonem stały się mniej skomplikowane konwencjonalne układy *CST* (sprawność do 32%) [4, 5, 37, 119]. Ze względu na wysoki *BOR* dla ówczesnych konstrukcji zbiorników i ich izolacji termicznej, sprawność układów odgrywała drugorzędną rolę. Poprawa własności, na przestrzeni lat, materiałów izolacyjnych, jak również wzrost cen *LNG* na światowych rynkach doprowadziła do poszukiwania nowych, alternatywnych układów napędowych odznaczających się wyższą sprawnością cieplną oraz lepiej realizujących funkcję transportową [3, 4, 5, 9, 12, 113].

Do najpopularniejszych alternatywnych rodzajów układów napędowych należy zaliczyć rozwiązanie z przekładnią elektryczną, do napędu którego zastosowano silniki dwupaliwowe o zapłonie samoczynnym – *DFDE*, oraz *TFDE* (sprawność do 42%) oraz układy z dwusuwowymi silnikami wolnoobrotowymi zasilanymi żeglugowym paliwem pozostałościowym z ponownym skraplaniem gazu, układy napędowe typu *DRL* (sprawność 47%). Od roku 2016 do eksploatacji zaczęto wprowadzać jednostki wyposażone w wysokosprawne dwupaliwowe wolnoobrotowe silniki spalinowe *DF-SSD* (Dual Fuel Slow Speed Diesel) (sprawność do 51%)) [3, 4, 21, 37, 107, 108, 110, 116, 117].

Ze względu na szybką ekspansje alternatywnych układów napędowych główni producenci okrętowych turbin parowych Mitsubishi Heavy Industries (*MHI*) oraz Kawasaki Heavy Industries (*KHI*) podjęli prace badawczo – rozwojowe nad zwiększeniem sprawności obiegu parowego[1, 3, 4].

Przeprowadzona w rozdziale 1 analiza układów napędowych zbiornikowców LNG oraz ich ocena kryterialna wykazała niezadowalającą sprawność cieplną układów parowych. Pomimo takich zalet jak niezawodność, niskie koszty obsługi (OPEX - OPerational EXpenditure), niską emisja związków szkodliwych (NO_x , SO_x , HC) oraz łatwość konwersji energii, są one wypierane z rynku napędów zbiornikowców LNG, przez wysokosprawne układy z tłokowymi silnikami spalinowymi [37].
Poszukując technologii efektywnego wykorzystania energii odpadowej tych układów, przeprowadzono bierny eksperyment eksploatacyjny, który wskazał potrzebę analizy, identyfikacji oraz oceny jakościowej źródeł dwóch największych strumieni energii odpadowej: spalin wylotowych z kotłów głównych oraz ciepła skraplania przekazywanego w skraplaczu głównym. Analiza ta wykazała [5]:

- relatywnie duży potencjał energetyczny pary odlotowej z turbiny, trudny do użytecznego wykorzystania jej ciepła w celu regeneracyjnego podgrzewania wody zasilającej kocioł ze względu na zbyt niskie ciśnienie oraz temperaturę,
- konieczność poszukiwania rozwiązań umożliwiających zwiększenie potencjału energetycznego pary odlotowej celem jej użytecznego wykorzystania.

Jako możliwe rozwiązanie wskazano zastosowanie inżektorów parowych, w których para odlotowa z turbiny napędu głównego mieszałaby się ze strumieniem pary zaczepowej, zasilającej inżektor.

2.2. Cel pracy

Celem głównym było rozpoznanie możliwości zwiększenia sprawności cieplnej układu energetycznego zbiornikowca z parowym napędem turbinowym, poprzez odzysk energii odpadowej, z zastosowaniem regeneracyjnego podgrzewania wody zasilającej.

Celem poznawczym rozprawy była identyfikacja i ocena źródeł energii odpadowej zbiornikowca *LNG* z konwencjonalnym turbinowym układem napędowym (*CST*) oraz możliwość użytecznego wykorzystania ciepła skraplania zawartego w parze odlotowej z turbin parowych układu napędowego statku, jako potencjalnego źródła ciepła odzyskowego [5].

Celem utylitarnym stało się opracowanie modelu regeneracyjnego podgrzewacza wykorzystującego inżektory parowe z zastosowaniem ich do wielostopniowego regeneracyjnego układu podgrzewania wody zasilającej kocioł, pracującego według obiegu Clausiusa-Rankinea [6].

Osiągnięcie celu głównego pracy oparto na hipotezie, iż zastosowanie inżektora zasilanego parą upustową spowoduje odzysk części energii skraplania traconej dotychczas w skraplaczu oraz umożliwi użyteczne jej wykorzystanie w celu podgrzania regeneracyjnego wody zasilającej. Fakt ten może spowodować zmniejszenie zapotrzebowanego strumienia masy pary upustowej oraz zwiększenie pracy wewnętrznej turbiny [38].

Do osiągnięcia celu głównego, jak również poznawczego i utylitarnego niezbędna była realizacja poznawczego celu cząstkowego.

Poznawczym celem cząstkowym była identyfikacja oraz analiza skuteczności zastosowania inżektorów w obiegu złożonym turbinowej siłowni parowej statku.

W pracy przedstawiono koncepcję nowego rozwiązania układu regeneracyjnego podgrzewania wody zasilającej kotły. Wykazano iż zastosowanie przedstawionego modelu, w wyniku odzysku porcji energii odpadowej wyprowadzonej dotychczas z układu w skraplaczu głównym, prowadzi do poprawy sprawności entalpowej całego układu [36].

2.3. Zakres pracy

W pracy przeprowadzono szczegółową analizę dostępnych układów napędowych dla zbiornikowców *LNG*. Przeanalizowano trendy rozwojowe turbinowych układów napędowych jak również nowe alternatywne rozwiązania. Jako konkluzję analizy, wskazano na konieczność poprawy sprawności energetycznej układów wykorzystujących turbiny parowe.

W celu poszukiwania obszarów rokujących poprawę sprawności przeprowadzono eksperyment eksploatacyjny, polegający na zbieraniu danych pracy siłowni w czasie eksploatacji. Dane te posłużyły do sporządzenia bilansu energetycznego konwencjonalnej siłowni parowej dla najczęściej występującego stanu eksploatacyjnego jakim jest podróż morska – cała naprzód (100% *MCR*), dla którego układy napędowe statków morskich są projektowane. Pozostałe stany eksploatacyjne uznano za marginalne i pominięto w analizie.

Na podstawie przeprowadzonej analizy wyznaczono główne źródła energii odpadowej, z której jako dwa główne (ciepło niesione przez przepracowaną parę odlotową, oraz ciepło zawarte w spalinach opuszczających kocioł) poddano analizie termodynamicznej. Pozostałe strumienie ze względu na niski procentowy udział w bilansie nie były uwzględniane w dalszej części pracy.

Analiza wskazała na wysoki potencjał energetyczny pary odlotowej. Jednak, ze względu na niski poziom energetyczny (ciśnienie oraz temperaturę) nie jest możliwe użyteczne wykorzystanie tego ciepła w powszechnie stosowanych układach regeneracyjnego podgrzewania wody kotłowej. Wskazano jednak na możliwość podniesienia poziomu energetycznego pary odlotowej na drodze mieszania się strumieni pary odlotowej oraz pary zaczepowej o wyższym poziomie energetycznym. Do realizacji tego zadania zaproponowano zastosowanie inżektora parowego jako sprężarki strumieniowej.

W kolejnych rozdziałach przeprowadzono wielowariantową analizę możliwości zastosowania inżektorów parowych w różnych konfiguracjach. Rozważono złożone układy o zróżnicowanym stopniu złożoności, wykorzystujące dodatkowe wymienniki ciepłą jak również różną liczbę oraz konfigurację zastosowanych inżektorów parowych.

W pracy przedstawiono nowy model rozwiązania układu regeneracyjnego poprawiający sprawność układu. Wskazano także na możliwe zakresy temperatur, dla których można poszczególne warianty stosować jak również wskazano na możliwości praktycznego zastosowania.

Ze względu na założone ramy pracy, oraz brak dostępu do odpowiedniego zbioru danych (koszty instalacji), nie przeprowadzono analizy ekonomicznej proponowanych rozwiązań, związanych z efektywnością instalacji w długiej skali czasowej.

Wskazano możliwe dalsze kierunki badań, które wykraczają poza założony przez autora zakres pracy. A mianowicie zastosowanie schładzania między stopniowego dla dwustopniowych zespołów inżektorowych. Zakłada się iż zastosowanie takiego rozwiązania korzystnie wpłynie na proces sprężania w dyfuzorze urządzenia inżektorowego, jak również przełoży się na wzrost sprawności układu.

Na realizację rozprawy składają się następujące zadania szczegółowe:

a) Analiza rozwiązań układów napędowych zbiornikowców *LNG* oraz ich ocena kryterialna (rozdział 1).

- b) Dekompozycja i bilans energetyczny rzeczywistego układu parowego (rozdział 3).
- c) Identyfikacja źródeł energii odpadowej klasycznego turbinowego układu napędowego (*CST*) (rozdział 3).
- d) Analiza termodynamiczna źródeł energii odpadowej (rozdział 3).
- e) Wstępna ocena możliwości zastosowania inżektora parowego w regeneracyjnym układzie zasilania wody kotłowej (rozdział 4).
- f) Zbudowanie modelu matematycznego urządzenia inżektorowego (rozdział 4).
- g) Wyznaczanie parametrów pracy inżektora parowego dla układu regeneracyjnego zasilania wody kotłowej (rozdział 5).
- h) Wyznaczenie parametrów pracy dwustopniowego zespołu inżektorowego (rozdział 5).
- i) Analiza zastosowania inżektorów parowych (studium przypadków) (rozdział 6)
 - powierzchniowe wymienniki podciśnieniowe (układy CR P)
 - zbiorniki mieszankowe (układy CR M)
 - powierzchniowe wymienniki nadciśnieniowe (układy CR N)
- j) Analiza złożonych układów wykorzystujących inżektory parowe, z zastosowaniem wielostopniowego podgrzewania wody zasilającej. (rozdział 7)
 - Układ regeneracyjny z trzema wymiennikami ciepłą oraz jednym inżektorem parowym CR3/1
 - Układ regeneracyjny z trzema wymiennikami ciepłą oraz dwoma niezależnymi inżektorami parowymiCR3/2.
 - Układy regeneracyjne z czterema wymiennikami ciepła oraz trzema inżektorami parowymi CR4/3:
 - i. Układ z trzema niezależnymi inżektorami parowymi.
 - ii. Układ z zastosowaniem dwustopniowego zespołu inżektorowego.
 - Złożone układy regeneracyjny z pięcioma wymiennikami ciepła oraz czterema inżektorami parowymi CR5/4:
 - i. Złożone układy z dodatkowym wymiennikiem w części niskociśnieniowej CR5/4 N
 - ii. Złożone układy z dodatkowym wymiennikiem w części wysokociśnieniowej CR5/4W

3. IDENTYFIKACJA ŹRÓDEŁ ENERGII ODPADOWEJ KONWENCJONALNEGO UKŁADU PAROWEGO

Przeprowadzona analiza oraz ocena kryterialna układów napędowych zbiornikowców *LNG* wykazała, iż jak dotychczas, turbinowe układy parowe posiadają niekonkurencyjną sprawność energetyczną, w porównaniu z rozwijającymi się alternatywnymi układami napędowymi[4, 37]. W toku rozpoznania problemu badawczego przeprowadzono identyfikację źródeł energii odpadowej układu *CST*, na potrzeby której przeprowadzono bierny eksperyment eksploatacyjny [5].

3.1. Program eksperymentu eksploatacyjnego

Program eksperymentu eksploatacyjnego przewidywał takie działania jak:

- dekompozycja rzeczywistego układu napędowego,
- identyfikacja parametryczna maszyn i urządzeń realizujących obieg,
- zamodelowanie schematu cieplno-przepływowego,
- pomiary parametrów pracy/wielkości eksploatacyjnych układu energetycznego wybranego zbiornikowca LNG,
- wyznaczenie wielkości niemierzalnych,
- obliczenia bilansu energetycznego siłowni,
- wyznaczenie głównych źródeł energii odpadowej,
- ocena jakościowa źródeł energii odpadowej,

którego etapy realizacji ujęto w algorytmie, przedstawionym na rysunku 3.2.

3.1.1. Wybór obiektu badań

W charakterze obiektu badań wybrano parowy turbinowy układ napędowy zbiornikowca *LNG* o pojemności 138 tyś. m³, jako najpowszechniej obecnie stosowany konwencjonalny turbinowy układ napędowy. Pomiary przeprowadzono podczas 18 miesięcy pracy autora na trzech statkach tej klasy, w latach 2012-2018.

Badany układ napędowy o parametrach przedstawionych w tabeli 3.1 składał się z dwukadłubowej turbiny parowej, skraplacza podciśnieniowego, instalacji wody zasilającej wraz z podgrzewaczami regeneracyjnymi oraz dwóch głównych kotłów parowych wytwarzających parę przegrzaną o parametrach pary świeżej $p_1 = 61$ bar oraz $t_1 = 525$ °C. Układ ten przekazywał moment obrotowy za pośrednictwem mechanicznej przekładni redukcyjnej i wału napędowego do jednej śruby okrętowej o stałym skoku.

Dokładny opis badanego układu napędowego przedstawiono w rozdziale 1.3.1. W tabeli 1.3 przedstawiono podstawowe dane techniczne i parametry opisujące badaną siłownię (*CST*-2003).

Konwencjonalny turbinowy układ napędowy zbiornikowca LNG o pojemności 138 tyś. m ³				
Kotły główne2x KHI UME 65/50				
Turbina napędu głównego	KHI UA - 400 29080 kW @ 90 obr/min			
Turbinowy zespół prądotwórczy	2x Shinko RG92-2 3450 kW 8145 obr/min			
Spalinowy zespół prądotwórczy	Wärtsila 9R32LNE 3770 kW x 720 obr/min			
Turbinowe pompy wody kotłowej	2x Coffin Turbo DEB-16 180m3 @ 86,5 bar			

Tab. 3.1 Podstawowe dane badanego układu napędowego (CST-2003)

3.1.2. Model cieplno-przepływowy obiektu badań

Na podstawie przeprowadzonej dekompozycji oraz identyfikacji maszyn i urządzeń układu energetycznego, przy wykorzystaniu dokumentacji technicznej ruchowej oraz wyników prób stoczniowych [119], zbudowano schemat cieplnoprzepływowy złożonego obiegu cieplnego rzeczywistego turbinowego układu napędowego przedstawionego na rysunku 3.1. Wyniki identyfikacji maszyn i urządzeń zdekomponowanego układu napędowego przedstawiono w tabeli 3.2.

Analizowany model układu składa się z kotła parowego produkującego parę przegrzaną o parametrach stanu 1. Para ta zasila główny turbozespół oraz turbiny zespołu pradotwórczego i turbopompy wody zasilającej. Turbina główna posiada trzy zaczepy upustu pary. Zaczep pary wysokiego ciśnienia zasila wytwornicę pary pomocniczej, z którego skropliny kierowane są do zbiornika odgazowującego. Zaczep średniego ciśnienia znajduje się na rurociągu pomiędzy kadłubem turbiny wysokiego oraz niskiego ciśnienia. Para zaczepowa średniego ciśnienia służy do zasilania podgrzewacza regeneracyjnego wysokiego ciśnienia, uzupełnienia instalacji pary odlotowej z turbopomp wody zasilającej, zasilania podgrzewaczy powietrza, instalacji pary uszczelniającej oraz uzupełniania niedoboru pary w instalacji upustu niskiego ciśnienia. Zaczep pary niskiego ciśnienia służy do zasilania podgrzewaczy regeneracyjnych pierwszego i trzeciego stopnia (odpowiednio wyparownika podciśnieniowego oraz podgrzewacza niskiego ciśnienia). Para uszczelniająca z dławic turbin zasila podgrzewacz regeneracyjny drugiego stopnia (gland steam condenser). Skropliny z pierwszych trzech podgrzewaczy spływają do skrzyni cieplnej łącząc się z głównym strumieniem kondensatu przed zbiornikiem mieszankowym. Skropliny z wytwornicy pary niskiego ciśnienia oraz podgrzewacza wysokiego ciśnienia kierowane są bezpośrednio do zbiornika mieszankowego, skad woda zasilająca poprzez podgrzewacz wysokiego ciśnienia oraz ekonomizer w kotle trafia do walczaka parowo-wodnego. Para odlotowa z niskoprężnej części zespołu turbiny głównej oraz para odlotowa z turbo generatora skraplana jest w podciśnieniowym skraplaczu głównym.

Rys. 3.1 Schemat cieplno-przepływowy modelu konwencjonalnego turbinowego układu napędowego zbiornikowca LNG

3.1.3. Metodyka i program eksperymentu

Algorytm realizacji biernego eksperymentu eksploatacyjnego przedstawiono na rysunku 3.2. Na procedurę eksperymentu składa się identyfikacja i analiza maszyn i urządzeń realizujących obieg cieplny układu napędowego według schematu cieplnoprzepływowego analizowanego obiegu, przedstawionego na rysunku 3.1.

Rys. 3.2 Algorytm realizacji eksperymentu eksploatacyjnego

Analizę przeprowadzono w oparciu o dane producentów, raporty zdawczo-odbiorcze maszyn i urządzeń [119] oraz wielkości zmierzone w trakcie eksploatacji dla wybranego stanu eksploatacyjnego (*MCR* Maximum Continuous Rating). Pomiarów wielkości mierzalnych dokonano za pomocą zintegrowanego systemu automatyki (*IAS* – Integrated Automation System) oraz okrętowego systemu *PMS* (Power Management System), jak również oprzyrządowania dodatkowego jak manometry, termometry, przepływomierze, liczniki oraz analizatory spalin. Przykładową kartę pomiarów stanowiącą wydruk z systemu monitoringu i nadzoru siłowni okrętowej przedstawiono na rysunku 3.3. Na rysunku 3.4 przedstawiono przykładowy zrzut ekranu zintegrowanego systemu automatyki *IAS*

z przykładowymi wynikami pomiarów parametrów pracy turbinowej siłowni parowej zbiornikowca *LNG*.

MAIN BOILER		NO. 1		 	NO. 2		
MAIN BOILER				-			
STEAM DRUM PRESSURE	PRESS	6.68	MPa		6.63 M	MPa	
SUPERHEATED STM PRESSURE	PRESS	5.80	MPa		5.80 1	MPa	
SUPERHEATED STM TEMP	TEMP	522	°C		524	°C	
DESUP STM PRESSURE	PRESS	6	MPa	6 MPa			
DESUP STM TEMP	TEMP	297.40	°C		297.95 °	°C	
FO HEADER PRESSURE	PRESS	0.35	MPa		0.34 1	MPa	
FO HEADER TEMP	TEMP	101	°C		100 9	°C	
FO	FLOW	0	kg/h		0 1	kg/h	
FG	PRESS	44	kPa		44 1	kPa	
FG	TEMP	34	°C		35 °	°C	
FG	FLOW	3,286	kg/h		3,266 1	kg/h	
ATOMISING STM PRESSURE	PRESS	0.50	MPa		0.50	MPa	
AID HEATED OUTLET	TEMP	127	°C		127 9	°C	
ECONOMISED GAS OUTLET	TEMP	170	°C		181	°C	
ECONOMISER GAS COTLET	TEMP	222	°C		230	°C	
WOXYGEN	TENT	1.81	%		1.86	%	
LPSG							
	*	(7)	1-D-	1			
SHELL	PRESS	674	kPa				
HEATING STEAM	PRESS	1,755	kPa				
FEED AND CONDENSATE							
MAIN FEED PRESSURE	PRESS	7,422.14	kPa				
MAIN FEED DIFFERENTIAL	PRESS	772	kPa				
GLAND CONDENSER OUTLET	TEMP	39	°C				
LP FFED HEATER OUTLET	TEMP	103	°C				
DEAERATOR OUTLET	TEMP	131	°C				
DEALARITOR OUTEEL	PRESS	197	kPa				
UD FEED HEATER OUTLET	TEMP	151	°C				
ADT	TEMP	03	°C				
CLOSED EVILATET	DDESS	103	1/Pa				
CLOSED EXHAUSI	PRESS	193	kPa				
IP HEATING STEAM	PRESS	541	кга				
MAIN CONDENSER SALINITY		4.6	ppm				
ADT SALINITY		6.0	ppm				
DEAERATOR SALINITY		4.4	ppm		-		
AUXILIARY CONDENSER							
SHELL	PRESS	-8	8 kPa				
AUX CONDENSER SALINITY		6.	6 ppm	 			
GENERATORS		TG	1	TG 2	, a	DG	
LOAD]	kW	1,984 kW		2 kW	
AMPS		() A	199 A		0 A	
LUBOIL	PRESS	0.04	kPa	0.15 kPa		0.81 kPa	
LUBOIL	TEMP	34	1 °C	42 °C		51 °C	
ALTERNATOR DE BRG	TEMP	34	°C	64 °C		43 °C	
ALTERNATOR DE DRO	TEMP	24	, °C	66 °C		39 °C	
ALTERNATOR NDE BRO	TEMP	33	, °C	76 °C		35 °C	
WINDING K	TEMP	30		77 °C		35 °C	
WINDING S	TEMP	30		76 90		25 00	
WINDING T	TEMP	30	5 °C	76 °C		33 C	

Rys. 3.3 Wydruk ze zintegrowanego systemu nadzoru i monitoringu siłowni (przykład karty pomiarowej)

Rys. 3.4 Zrzut ekranu systemu nadzoru i monitoringu parametrów pracy siłowni zbiornikowca LNG

Równocześnie wyznaczono strumienie entalpii, jako funkcje stanów czynnika roboczego. Określone wielkości utworzyły zbiór danych o parametrach pracy maszyn i urządzeń oraz stanach czynnika roboczego (tabela 3.2 oraz tabela 3.3). Dane te potraktowano jako zmienne w bilansie cieplnym obiegu, zgodnie z algorytmem przedstawionym na rysunku 3.2. W wyniku obliczeń wyznaczono wielkości strumieni energii użytecznej oraz energii odpadowej.

3.2. Bilans energetyczny turbinowego układu napędowego

Na podstawie zebranych danych pomiarowych oraz pochodzących z identyfikacji maszyn i urządzeń sporządzono bilans energetyczny siłowni okrętowej celem wyznaczenia zarówno strumieni energii użytecznej (wyznaczenie sprawności napędowej siłowni) oraz określeniem źródeł energii odpadowej (strat ciepła w układzie). Bilans energetyczny sporządzono dla wybranego stanu eksploatacyjnego podróż morska – "cała naprzód" przy obciążeniu turbiny napędu głównego 100% *MCR*. Obliczenia wykonano dla wariantu pracy kotłów przy opalaniu jedynie pozostałościowym paliwem żeglugowym *HFO*.

Wyniki obliczeń bilansu wykorzystano następnie do przeprowadzenia analizy i oceny jakościowej źródeł energii odpadowej w celu poszukiwania technicznych możliwości ich efektywnego wykorzystania.

3.2.1. Wielkości wejściowe

Zebrane dane pomiarowe oraz wyznaczone wielkości niemierzalne zgodnie z algorytmem eksperymentu posłużyły jako wielkości wejściowe do obliczeń bilansu energetycznego turbinowej siłowni parowej. Wielkości te zestawiono w tabelach 3.2 oraz w kolumnach 2-5 tabeli 3.3.

	KOTŁY	GŁÓWNE				
Para przegrzana	p ₁ [bar]	61	t ₁ [°C]	525	i ₁ [kJ/kg]	3481
Para ochłodzona	p ₁₉ [bar]	60,8	t ₁₉ [°C]	288	i ₁₉ [kJ/kg]	2835
Sprawność kotła przy zasilaniu HFO	$\eta_{\rm KHFO}$ [-]	0,879				
Wartość opałowa dolna	W _d [kJ/kg]	43040				
Masowy stosunek powietrza do paliwa dla O ₂ =2%	λ=1,2 B=	17,9				
	PODGRZEWA	ACZ POWIET	rrza			
Temperatura powietrza (dolot)	T _{pow dol} [°C]	45				
Temperatura powietrza (wylot)	T _{pow wyl} [°C]	120				
Ciepło właściwe powietrza	c _P [kJ/kgK]	1				
Parametry pary grzewczej (dolot)	p _{3b} [bar]	3,2	t _{3b} [°C]	245	i _{3b} [kJ/kg]	2943
Parametry kondensatu	p ₂₈ [bar]	3	t ₂₈ [°C]	133	i ₂₈ [kJ/kg]	561
	TURBINA NAP	ĘDU GŁÓW	NEGO			
Moc na wale (za przekładnią)	P _e [kW]	29080				
Parametry pary świeżej	p _{1a} [bar]	59,5	t1a [°C]	520	i _{1a} [kJ/kg]	3470
Parametry pary odlotowej	p₅ [bar]	0,05	t₅ [°C]	33	i₅ [kJ/kg]	2294
Upust pary wysokiego ciśnienia	p ₂ [bar]	19,5	t ₃ [°C]	372	i ₂ [kJ/kg]	3186,2
Upust pary pośredniego ciśnienia	p ₃ [bar]	6,6	t ₃ [°C]	245	i ₃ [kJ/kg]	2943
Upust pary niskiego ciśnienia	p ₄ [bar]	1,5	t ₄ [°C]	131	i ₄ [kJ/kg]	2734
Sprawność wewnętrzna	η _{iMT} [–]	0,874				
Sprawność mechaniczna	η _{mMT} [–]	0,974				
Sprawność przekładni mechanicznej	η _{gbMT} [-]	0,98				
	TURBINOWY ZESP	PÓŁ PRĄDO	rwórczy		· ·	
Moc na zaciskach prądnicy	N _{e alt} [kW]	1475				
Parametry pary świeżej	p _{1b} [bar]	61	t _{1b} [°C]	520	i _{1b} [kJ/kg]	3470
Parametry pary odlotowej	p ₃₀ [bar]	0,05	t ₃₀ [°C]	35	i ₃₀ [kJ/kg]	2452
Sprawność wewnętrzna turbiny	η _{iTA} [–]	0,759				
Sprawność mechaniczna turbiny	η _{mTA} [-]	0,97				
Sprawność przekładni mechanicznej	η _{gbTA} [-]	0,98				
Sprawność prądnicy	$\eta_{altTA}[-]$	0,96				
Sprawność całkowita	η _т [–]	0,266				
Т	JRBINOWA POMPA ZA	SILAJĄCA W	ODY KOTŁOWEJ			
Parametry pary świeżej	p _{1c} [bar]	61	t _{1c} [°C]	520	i _{1c} [kJ/kg]	3470
Parametry pary odlotowej	p ₂₈ [[bar]	3	t ₂₉ [°C]	310	i ₂₉ [kJ/kg]	3100
Sprawność wewnętrzna turbiny	η _{iFP} [-]	0,47				
Sprawność mechaniczna turbiny	η _{mFP} []	0,97				
Sprawność pompy	η _p [–]	0,6				
Jednostkowe zapotrzebowanie energii	H _z [kJ/kg]	7,47				
WYTW	ORNICA PARY NISKIEG	O CIŚNIENIA	(GRZEWCZEJ) -	LPSG		
Wydajność parowa	D ₂₂ [kg/h]	2700				
Parametry pary pomocniczej	p ₂₂ [bar]	9	t ₂₂ [°C]	175	i ₂₂ [kJ/kg]	2773
Parametry wody zasilającej	p _x [bar]	12	t _x [°C]	90	i _x [kJ/kg]	377
Parametry pary grzewczej (zasilającej)	p _{20b} [bar]	19,5	t _{20b} [°C]	372	i _{20b} [kJ/kg]	3186,2
Parametry skroplin pary grzewczej	p ₂₁ [bar]	3	t ₂₁ [°C]	132	i ₂₁ [kJ/kg]	554

Tab. 3.2 Wielkości charakteryzujące poszczególne elementy zdekomponowanego układu napędowego (wielkości wejściowe dla bilansu energetycznego modelu)

Diagramme kontrolae	Ciśnienie A	Temp.	Entalpia	Natężenie przepływu	Strumier	n masy
Płaszczyzna kontroina	[barA]	[°C]	[kJ/kg]	[-]	[kg/h]	[kg/s]
1 – Para przegrzana na wyjściu z kotła głównego	61	525	3481	1,0000	114901,40	31,917
1a – Para przegrzana dolot turbiny napędu głównego	59,5	520	3470	0,9156	105199,73	29,222
1b – Para przegrzana na wejściu do turbo generatora	61	520	3470	0,0497	5715,81	1,588
1c – Para przegrzana dolot turbiny pompy wody kotłowej	61	520	3470	0,0347	3985,85	1,107
1d- Para przegrzana dolot wewnątrz-kotłowego schładzacza pary	60,8	525	3481	0,0000	0,00	0,000
2- Upust wysokiego ciśnienia	19,5	372	3186,2	0,0214	2457,38	0,683
3- Para wylotowa turbiny wysokiego ciśnienia	6,6	245	2943	0,8942	102742,35	28,540
3a- Para zasilająca turbinę niskiego ciśnienia	6,6	245	2943	0,7921	91016,50	25,282
3b- Upust pary ciśnienia pośredniego – podgrzewacza powietrza	3,2	245	2943	0,0437	5020,21	1,395
3c- Upust pary ciśnienia pośredniego – deaerator	3	245	2945	0,0188	2158,21	0,600
3d- Upust pary ciśnienia pośredniego – podgrzewacz wysokiego ciśnienia	6,6	245	2943	0,0362	4157,78	1,155
3e- Upust pary ciśnienia pośredniego – uzupełnienie upustu niekiego ciśnienia	6,6	245	2943	0,0000	0,00	0,000
3f Upust pary ciśnienia pośredniego – zasilenie instalacji pary	6,6	245	2943	0,0034	389,65	0,108
4- Upust pary niskiego ciśnienia	1,5	131	2734	0,0838	9627,88	2,674
4a- Upust pary niskiego ciśnienia - wyparownik	1,5	131	2734	0,0209	2403,38	0,668
4b- Upust pary niskiego ciśnienia – podgrzewacz niskiego ciśnienia	1,5	131	2734	0,0629	7224,50	2,007
5- Para wylotowa turbiny niskiego ciśnienia	0,066	38	2294	0,7083	81388,62	22,608
6- Kondensat – skraplacz główny	0,05	33	138	0,7581	87104,43	24,196
7- Kondensat – wejście wyparownik podciśnieniowy	10	33	138	0,7581	87104,43	24,196
8- Kondensat – wejście skraplacz pary uszczelniającej	10	48,5	204	0,7581	87104,43	24,196
9- Kondensat – wejście podgrzewacz niskiego ciśnienia	10	51	215	0,7581	87104,43	24,196
10- Kondensat – wyjście podgrzewacz niskiego ciśnienia	10	102	427	0,7581	87104,43	24,196
11- Skropliny – atmosferyczna skrzynia cieplna (ADT)	1	90	376	0,1309	15037,75	4,177
12- Skropliny z ADT za pompą	10	90	377	0,1309	15037,75	4,177
13- Kondensat wejście do deaeratora	10	95	398	0,8890	102142,18	28,373
14- Woda zasilająca wyjście z deaeratora	3	131	550	1,0000	114901,40	31,917
15- Woda zasilająca za pompą zasilającą	75	131	555	1,0000	114901,40	31,917
16- Woda zasilająca za podgrzewaczem wysokiego ciśnienia	75	151	640	1,0000	114901,40	31,917
17- Woda zasilająca za ekonomizerem	75	230	990	1,0000	114901,40	31,917
18- Para – walczak parowo-wodny	65	280	2778	1,0000	114901,40	31,917
19- Para ochłodzona na wyjściu z kotła głównego	60,8	288	2835	0,0000	0,00	0,000
20- Para ochłodzona	19,5	372	3186,2	0,0214	2457,38	0,683
20a- Para ochłodzona – zasilanie upustu pary pośredniego ciśnienia	19,5	372	3186,2	0,0000	0,00	0,000
20b- Para grzewcza wytwornicy pary pomocniczej	19,5	372	3186,2	0,0214	2457,38	0,683
21- Skropliny z wytwornicy pary pomocniczej	3	132	554	0,0214	2457,38	0,683
22- Pomocnicza para grzewcza	9	175	2773	XXX	xxx	xxx
23a- Para uszczelniająca turbiny wysokiego ciśnienia	0,7	190	2857	XXX	xxx	xxx
23b- Para uszczelniająca turbiny niskiego ciśnienia	0,7	190	2857	xxx	xxx	xxx
23c- Para uszczelniająca turbo generatora	0,7	190	2857	xxx	xxx	xxx
23d- Para uszczelniająca turbiny pompy zasilającej wody kotłowej	0,7	190	2857	xxx	xxx	xxx
23- Para uszczelniająca wejście do skraplacza pary uszczelniającej	0,7	190	2857	0,0034	389,65	0,108
24- Skropliny pary grzewczej wyparownika	1	82	342	0,0209	2403,38	0,668
25- Skropliny ze skraplacza pary uszczelniającej	1	95	398	0,0034	389,65	0,108
26- Skropliny podgrzewacza niskiego ciśnienia	1	80	335	0,1066	12244,71	3,401
27- Skropliny podgrzewacza wysokiego ciśnienia	3,8	142	594	0,0362	4157,78	1,155
28- Skropliny podgrzewacza powietrza	3	133	561	0,0437	5020,21	1,395
29- Para odlotowa turbiny pompy wody zasilającej	3	310	3100	0,0347	3985,85	1,107
30- Para odlotowa tubo generatora	0,075	40	2452	0,0497	5715,81	1,588

Tab.	3.3	Właściwo	ości te	ermodvnami	czne czvn	inika roboc	zego w r	ołaszczy	znach koi	ntrolnvch	modelu i	ıkładu
	0.0							- and				

Nie wyznaczono strumieni masy pary uszczelniającej poszczególne turbiny ze względu na ich niskie znaczenie dla bilansu. Uwzględniono jedynie sumaryczny strumień masy pary uszczelniającej.

3.2.2. Algorytm obliczeń

Założony model cieplnoprzepływowy układu napędowego wraz z przedstawionymi w tabeli 3.2 oraz kolumnach 2-4 tabeli 3.3, posłużyły do wyznaczenia strumieni masy pary oraz kondensatu w płaszczyznach kontrolnych układu (kolumny 5-7 tabela 3.3). Algorytm obliczeń przedstawiono na rysunku 3.5. Obliczenia bilansu ciepła przeprowadzono dla wielkości właściwych ($\dot{m}_{15} = \dot{m}_1$), co umożliwiło określenie zapotrzebowania pary przez turbinę pompy wody zasilającej oraz wytwornicy pary niskiego ciśnienia.

Rys. 3.5 Algorytm obliczeń bilansu energetycznego obiegu cieplnego układu CST

Wykorzystując określone w wyniku eksperymentu wielkości rozwiązano układ równań zachowania dla:

- zbiornika mieszankowo-podgrzewającego (bilans energetyczny + bilans strumieni masy),
- podgrzewacza powietrza wyznaczając strumień powietrza zapotrzebowany dla $\lambda=1,2$ oraz jednostkowe zapotrzebowanie na parę grzewczą.

W oparciu o równania dla podgrzewacza niskiego ciśnienia, skraplacza pary uszczelniającej oraz wyparownika podciśnieniowego w funkcji strumienia kondensatu za skraplaczem głównym ($\dot{m}_x = f(\dot{m}_6)$) oraz równania zachowania strumienia masy skraplacza głównego, zbudowano układ czterech równań, dzięki któremu zbilansowano i wyznaczono strumienie masy upustów regeneracyjnych pary. Dla przyjętego zapotrzebowania na energię elektryczną obliczono godzinowe zapotrzebowanie pary świeżej turbiny zespołu prądotwórczego. Wyznaczenie zapotrzebowania na parę przez turbinę główną oraz całą siłownię, nastąpiło w wyniku zbilansowania wielkości strumienia zaczepów pary, zapotrzebowania godzinowego na parę świeżą przez turbinowy zespół prądotwórczy i założoną moc napędu głównego.

3.2.3. Wyniki obliczeń i dyskusja bilansu energetycznego

Uzyskane wyniki obliczeń wartości strumieni przedstawiono w tabeli 3.3 w kolumnach 5, 6, 7, co było podstawą do wyznaczenia wartości strumieni energii użytecznej, odpadowej oraz strat obiegu, przedstawionych w tabeli 3.4.

BILANS CIEPLNY DLA OBCIĄŻENIA UKŁADU NAPĘDOWEGO 100% MCR (29080 kW @ 90 obr/min)								
	STRUMIEŃ MASY	CIŚNIENIE	TEMP.	ENTALPIA	МОС	2	CIEPŁO JEDNOSTKOWE	UDZIAŁ PROCENTOWY
	[kg/h]	[bar]	[°C]	[kJ/kg]	[kJ/h]	[kW]	[kJ/kWh]	[%]
MOC TURBINY NAPĘDU GŁÓNEGO	xxx	xxx	XXX	xxx	104688000	29080	3600,00	29,2
MOC NA ZACISKACH PRĄDNICY	xxx	XXX	xxx	XXX	5310000	1475	182,60	1,5
STRUMIEŃ CIEPŁA PARY POMOCNICZEJ	2572	9	175	2773	6468314,2	1796,8	222,43	1,8
STRATY SKRAPLANIA TURBINY NG	81388,6	0,066	38	2294	175473867,3	48742,7	6034,18	49,0
STRATY SKRAPLANIA TURBINY ZP	5715,81	0,075	40	2452	13226381,8	3674	454,83	3,7
STRATY WYLOTOWE KOTŁA GŁÓWNEGO	157827,5	> Atmos.	155	285	44935857,3	12482,2	1545,2	12,50
STRATY MECHANICZNE TURBINY NG	xxx	xxx	XXX	xxx	2851577,8	792,1	98,06	0,8
STRATY MECHANICZNE TURBINY ZP	xxx	xxx	XXX	xxx	174560,8	48,5	6,00	0,05
STRATY MECHANICZNE TURBO POMPY WODY KOTŁOWEJ	xxx	xxx	xxx	xxx	44243	12,29	1,52	0,01
STRATY PRZEKŁADNI DLA TURBINY NG	xxx	xxx	xxx	xxx	2136489,8	593,5	73,47	0,6
STRATY PRZEKŁADNI DLA TURBINY ZP	xxx	xxx	xxx	xxx	112882,6	31,4	3,88	0,03
OPORY PRZEPŁYWU W RUROCIĄGACH	xxx	xxx	xxx	xxx	1263915,3	351,1	43,46	0,4
STRATY TURBO POMPY WODY KOTŁOWEJ	xxx	xxx	xxx	xxx	572208,9	158,9	19,68	0,16
STRATY W PRĄDNICY	xxx	xxx	xxx	xxx	221250	61,5	7,61	0,06
SUMA					357479548,9	87168,8	10791,18	99,81

Tab. 3.4 Wyniki bilansu energetycznego dla obciążenia układu napędowego 100% MCR (29080 kW @ 90 obr/min)

Wyznaczona suma strumieni energii użytecznej stanowi 32,5 % energii doprowadzonej do układu. Suma tych strumieni charakteryzuje sprawność energetyczną układu. Sprawność napędowa badanej siłowni wyniosła 29,2% (odniesiona do mocy na wale napędowym). Wielkości te zbliżone są do wartości oszacowanych na podstawie danych producenta, przedstawionych w rozdziale 1.3.1, tabela 1.1.

Źródłem największych strat ciepła analizowanego układu parowego jest ponowne skraplanie przepracowanej w turbinach pary (52,7 % - energii dostarczonej do układu), przekazywanej wodzie zaburtowej w skraplaczu podciśnieniowym. Strata ciepła wynikająca ze skraplania pary odlotowej turbiny napędu głównego stanowi 49 % ciepła doprowadzonego do układu, natomiast ciepło skraplania pary odlotowej turbinowego zespołu prądotwórczego wynosi 3,7 % ciepła doprowadzonego. Ciepło pary odlotowej z turbiny pompy wody zasilającej kocioł w całości jest odzyskiwana w zbiorniku mieszankowo-odgazowującym.

Drugim co do wielkości źródłem energii odpadowej turbinowego układu napędowego, są całkowite straty kotłowe – 12,5%, których główny strumień stanowią spaliny wylotowe. Do zauważalnych inżyniersko zbiorów strat należy zaliczyć: straty mechaniczne związane z wywiązywaniem się ciepła w węzłach trybologicznych (straty mechaniczne turbin oraz przekładni) – 1,49 %. Ponadto występują takie straty energii jak na pokonanie oporów przepływu w rurociągach, strat dławienia na elementach armatury rurociągów oraz straty w generatorze i pompie, które sumarycznie nie przekraczają 0,7 %.

Wyniki bilansu energetycznego zamodelowanej siłowni w postaci graficznej przedstawiono na rysunku 3.6 przy pomocy pasmowego wykresu Sankeya, który obrazuje kierunki przepływu energii wraz z określeniem ich wielkości. Poza złożonością procesu konwersji energii współczesnej turbinowej siłowni parowej, prezentuje on źródła oraz udział energii odpadowej, tym samym potwierdzając potrzebę podjęcia tematu.

Rys. 3.6 Wykres pasmowy Sankeya dla turbinowej siłowni parowej (CST)

Obliczenia sprawdzające modelu matematycznego turbinowego układu napędowego zbiornikowca *LNG* (*CST*), wykonano poprzez analizę porównawczą uzyskanych na drodze obliczeń wielkości strumieni masy pary w charakterystycznych punktach kontrolnych z wielkościami zmierzonymi w trakcie prób morskich. Porównanie tych wielkości umożliwia ocenę poprawności oraz dokładności, modelu matematycznego konwencjonalnej siłowni parowej. Porównano wielkości, strumieni masy pary:

- świeżej na wyjściu z kotła,
- świeżej na dolocie do turbiny wysokiego ciśnienia,
- świeżej na dolocie do turbiny zespołu prądotwórczego,
- świeżej na dolocie do turbiny pompy wody zasilającej kocioł,
- wylotowej z turbiny wysokiego ciśnienia,
- zasilającej turbinę niskiego ciśnienia,
- wylotowej z turbiny niskiego ciśnienia,

oraz strumienie masy:

- kondensatu za skraplaczem głównym,
- skroplin za skrzynią cieplną,
- kondensatu na wejściu do deaeratora,
- wody zasilającej kocioł główny,
- pary zasilającej wytwornicę pary pomocniczej,
- skroplin za skraplaczem pary uszczelniającej,
- skroplin podgrzewacza niskiego ciśnienia,
- paliwa.

Dla każdego, rozpatrywanego punktu kontrolnego modelu wyznaczono błąd względny według zależności:

$$\varepsilon = \frac{\Delta \chi}{\chi_P} = \frac{\chi_O - \chi_P}{\chi_P} \tag{3.1}$$

Gdzie: χ_0 – wartość obliczona,

 χ_P – wartość zmierzona.

W tabeli 3.5 przedstawiono wielkości wyznaczone za pomocą modelu matematycznego, wielkości zmierzone w trakcie eksploatacji rzeczywistego układu napędowego, oraz obliczony błąd względny.

	Strumie	eń masy	
Płaszczuzna kontrolna	Wartość	Wartość	
	obliczona	zmierzona	Błąd względny
	[kg/h]	[kg/h]	[%]
Para świeża	114901,4	113195	1,51
Para świeża dolot do turbiny wysokiego ciśnienia	105199,73	103353,6	1,79
Para świeża na wejściu do turbo generatora	5715,81	5750	-0,59
Para świeża dolot turbiny pompy wody kotłowej	3985,85	4082,1	-2,36
Para wylotowa turbiny wysokiego ciśnienia	102742,35	100958	1,77
Para zasilająca turbinę niskiego ciśnienia	91016,5	91269,2	-0,28
Para wylotowa turbiny niskiego ciśnienia	81388,62	80694	0,86
Kondensat – skraplacz główny	87104,43	89395	-2,56
Skropliny – atmosferyczna skrzynia cieplna (ADT)	15037,75	14570	3,21
Kondensat wejście do deaeratora	102142,18	103964	-1,75
Woda zasilająca wyjście z deaeratora	114901,4	114656	0,21
Para grzewcza wytwornicy pary pomocniczej	2457,38	2420,9	1,51
Skropliny ze skraplacza pary uszczelniającej	389,65	384	1,47
Skropliny podgrzewacza niskiego ciśnienia	12244,71	12725	-3,77
Zużycie paliwa	8350	8604	-2,95

Tab. 3.5 Porównanie wyników obliczeń modelu matematycznego ze zmierzonymi wartościami strumieni masy w charakterystycznych płaszczyznach kontrolnych

Wyniki wyznaczonych wielkości błędu względnego w charakterystycznych płaszczyznach kontrolnych, wskazują na dobrą zgodność wyznaczonych wielkości za pomocą modelu matematycznego oraz wielkość zmierzonych. Generalnie wartości wyznaczonych błędów mieszczą się w granicach błędu przemysłowego (3%). Natomiast przekraczają tą wartość w dwóch przypadkach, dla strumienia skroplin za skrzynią cieplna oraz skroplin pary podgrzewacza niskiego ciśnienia, co może być konsekwencją sumowania się błędów mieszających się w tych miejscach strumieni masy. Zauważyć można iż generalnie większe wartości błędu względnego występują dla mniejszych wartości strumieni masy.

3.3. Ocena jakościowa źródeł energii odpadowej układu

Zidentyfikowane wielkości strumieni energii w kontekście możliwości ich wykorzystania, jako energii użytecznej, wymagają oceny ich przydatności do wykonania pracy, a w konsekwencji wykonania zadania transportowego zbiornikowca *LNG*. Analizie podano jedynie strumienie pary odlotowej z turbiny napędu głównego i turbinowego zespołu prądotwórczego oraz strumień spalin z parowego kotła głównego. Strumienie strat mechanicznych i oporów przepływu uznano za inżyniersko pomijalne, ze względu na stosunkowo małe wartości strumieni tych energii, jak również na złożoność ich identyfikacji i wartościowania. Natomiast możliwości ich zmniejszenia związane są ściśle z konstrukcją elementów wykonawczych takich jak geometria profili i wieńców łopatkowych, sposób łożyskowania zespołów wirnikowych turbin, konstrukcja ich kadłubów oraz sposób ich chłodzenia, wraz z instalacją, rurociągami i armaturą [1, 4, 5, 47, 53, 58, 59, 60, 68, 81, 90].

Do oceny jakości strumieni energii odpadowej zastosowano funkcje stanu w postaci związków dla [7, 43, 64, 65, 90, 91]:

– entalpii

$$i = c_p T \tag{3.2}$$

$$i = u + pV \tag{3.3}$$

- egzergii fizycznej:

$$b_{steam} = i_{steam} - i_0 - T_0(s_{steam} - s_0)$$
(3.4)

$$b_{exh} = c_{pexh}(T_{exh} - T_0) - T_0 c_{pexh} \ln \frac{T_{exh}}{T_0}$$
(3.5)

temperaturowego współczynnika jakości energii

$$\psi_T = f(t) = \frac{T_{Source} - T_0}{T_{Source}}$$
(3.6)

- egzergetycznego współczynnika jakości energii

$$\psi_{b/i} = f(b, \Delta i) = \frac{b}{\Delta i}$$
(3.7)

- strumieni masy nośników energii odpadowej.

Wyniki zdefiniowanych funkcji stanu przedstawiono w tabeli 3.6. Dla zapewnienia porównywalności wyników, zastosowane wskaźniki jakości energii, wymagały zdefiniowana parametrów stanu wzorcowego każdego nośnika energii odpadowej (dla warunków otoczenia). Dla pary odlotowej za stan referencyjny przyjęto parametry czynnika w skraplaczu głównym ($p_{Steam0}=0,05$ barA, $T_{Steam0}=33$ °C, oraz wyznaczoną entalpię kondensatu $i_6=138$ kJ/kg). Dla strumienia energii odpadowej niesionego w spalinach wylotowych z kotła głównego stan referencyjny określają parametry $p_{Exh0}=1,025$ barA, $T_{Exh0}=30$ °C oraz entalpia $i_{Exh0}=30$ kJ/kg.

Dla przyjętych stanów referencyjnych oraz wyznaczonych w trakcie eksperymentu eksploatacyjnego i obliczeń bilansu cieplnego siłowni wyznaczono wielkości egzergii fizycznej (wzory 3.4 i 3.5) poszczególnych nośników energii odpadowej jak również obliczono współczynniki jakości energii (wzory 3.6, 3.7) (tabela 3.6).

	Strumień masy	Ciepło	Ciśnienie Abs.	Temp.	Entalpia	x	Egzergia	ψ temp	ψ f(b,i)
	[kg/h]	[kJ/h]	[barA]	[°C]	[kJ/kg]	[-]	[kJ/kg]	[-]	[-]
Straty skraplania MT	81388,6	175473867	0,066	38	2294	0,888	1926,4	0,132	0,8936
Straty skraplania TA	5715,8	13226382	0,075	40	2452	0,95	2069,7	0,175	0,8945
Straty kominowe	157827,5	44935857	1,05	155	285	XXX	139,25	0,806	0,5460

Tab. 3.6 Funkcje stanu wyznaczone do oceny jakości źródeł energii odpadowej

3.4. Podsumowanie

Na podstawie bilansu energetycznego przeprowadzonego dla rzeczywistego turbinowego układu napędowego wyselekcjonowano trzy główne strumienie energii odpadowej. Są to straty skraplania pary dla turbiny napędu głównego i turbiny zespołu prądotwórczego oraz straty kominowe kotłów głównych. Źródła te poddano analizie pod kątem jakości tych źródeł ze względu na ich wysoki udział procentowy w bilansie.

Wyznaczone wskaźniki jakości energii: temperaturowego $\psi = f(T)$ oraz egzergetycznego $\psi = f(b,i)$) dla spalin wylotowych wskazują na duży potencjał tego źródła. Dostępne są zarówno duży gradient temperatur ($t_{exh} = 155 \, ^\circ C$; $t_0 = 30 \, ^\circ C$), jak również znaczny strumień energii (około 12,5% energii doprowadzonej do układu). O podatności energii zawartej w spalinach do odzysku decyduje maksymalna temperatura przechłodzenia spalin opuszczających ekonomizer. Temperatura ta ze względu na wykraplanie się związków siarki zawartej w paliwie, musi być skorelowana z kwasowym punktem rosy jednak nie powinna ona być niższa od 140-150 °C, w zależności od zawartości siarki w zastosowanym paliwie [28, 87]. Kryterium to znacznie ogranicza możliwości użytecznego wykorzystania energii odpadowej zawartej w spalinach wylotowych. Konieczne w tym wypadku było by wykorzystanie paliwa o mniejszej zawartości siarki.

Wyznaczone wielkości egzergii fizycznej (b_{steam}), jak również egzergetycznego wskaźnika jakości energii ($\psi = f(b,i)$) dla pary odlotowej z zespołu turbinowego napędu głównego i turbo zespołu prądotwórczego, wskazują na bardzo duży potencjał energetyczny tych strumieni. Jednak ze względu na niski stan energetyczny, małą różnicę temperatur i duże rozproszenie ciepła pary wylotowej, nie jest możliwe bezpośrednie użyteczne wykorzystanie tego ciepła w klasycznym okrętowym wymienniku ciepła (z przegrodą między czynnikiem grzewczym), a czynnikiem odbierającym ciepło.

Otrzymane i przedstawione wyniki stwarzają techniczne przesłanki rokujące zasadność racjonalnego wykorzystania zidentyfikowanego ciepła odpadowego w procesie mieszania się strumieni. Rozważa się techniczne możliwości realizacji regeneracyjnego obiegu parowowodnego, w którym ciepło skraplania częściowo zostałoby wykorzystane do regeneracyjnego podgrzewania wody zasilającej kotły główne.

Zastosowanie układu wykorzystującego inżektory regeneracyjne, odzyskujące ciepło utajone (ciepła skraplania ze skraplacza głównego), umożliwiłoby zmniejszenie zapotrzebowania pary zaczepowej układu, dzięki czemu zwiększeniu uległby całkowity dostępny spadek entalpii. Zwiększeniu uległaby również moc turbinowego zespołu napędowego lub zmniejszeniu uległo by zapotrzebowanie pary oraz paliwa.

4. OBLICZENIA WSTĘPNE TURBINOWEGO OBIEGU PAROWEGO Z INŻEKTOREM PAROWYM

Identyfikacja źródeł energii odpadowej turbinowego układu napędowego wykazała, iż strumień ciepła wyprowadzony z układu w skraplaczu głównym posiada duży potencjał energetyczny. Wskazano także w rozdziale 3, na możliwości użytecznego wykorzystania traconego ciepła w wyniku mieszania się strumieni pary o wyższych parametrach z parą odlotową z turbiny napędu głównego. W tym celu zaproponowano zastosowanie inżektora parowego [6, 36, 38]. Zakładając iż:

"Zastosowanie inżektora zasilanego parą upustową spowoduje odzysk części energii skraplania traconej dotychczas w skraplaczu oraz umożliwi użyteczne jej wykorzystanie w celu regeneracyjnego podgrzania wody zasilającej. Fakt ten może spowodować zmniejszenie zapotrzebowanego strumienia masy pary upustowej oraz zwiększenie dysponowanego spadku entalpii w turbinie."

4.1. Koncepcja układu z zastosowaniem inżektora parowego

Zastosowanie inżektora parowego, zasilanego parą upustową z turbiny napędu głównego, ma na celu podwyższenie poziomu energetycznego części strumienia pary odlotowej z turbiny celem użytecznego wykorzystania jej do podgrzewania regeneracyjnego wody kotłowej.

Na rysunku 4.1 przedstawiono schematy cieplno-przepływowe dwóch układów realizujących regeneracyjny obieg Clausiusa-Rankinea. Schemat przedstawiono jako wariant A, przyjęty jako układ referencyjny składa się z kotła głównego, turbiny napędu głównego, skraplacza podciśnieniowego pompy kondensatu, jednego wymiennika ciepła (zbiornika mieszankowego) oraz pompy wody zasilającej kocioł. W układzie tym regeneracyjny wymiennik ciepła zasilany jest bezpośrednio parą zaczepową z turbiny.

Rys. 4.1 Koncepcja wykorzystania inżektora parowego A – układ referencyjny realizujący regeneracyjny obieg Clausiusa-Rankinea; B – Zmodyfikowany układ z wykorzystaniem inżektora parowego.

Wariant B stanowi modyfikację układu referencyjnego poprzez zastosowanie inżektora regeneracyjnego. Inżektor ten zasilany jest parą upustową z turbiny napędu głównego oraz zasysa parę odlotową turbiny, przy założonym stopniu eżekcji (definiowanym jako stosunek masy pary zassanej do pary zasilającej inżektor). Dla tego układu regeneracyjny wymiennik

ciepła zasilany jest parą stanowiącą mieszaninę pary upustowej i odlotowej z turbiny. Na rysunku 4.2 przedstawiono przekrój inżektora parowego, którego zadaniem jest zwiększenie potencjału energetycznego pary odlotowej z turbiny napędu głównego w celu użytecznego wykorzystania jej ciepła skraplania. Inżektor składa się z:

- Dyszy de Lavala, o kształcie zbieżno–rozbieżnym pomiędzy przekrojami C-C oraz N-N;
- Komory mieszania (N-N/D-D), w której następuje mieszanie strumieni rozprężonej w dyszy pary zasilającej oraz pary zasysanej z równoczesną wymiana energii pomiędzy strumieniami. Następuje tu również częściowe osuszenie mieszaniny kosztem energii kinetycznej;
- Dyfuzora (D-D/L-L), w którym zachodzi zamiana energii kinetycznej na ciepło oraz energię potencjalną.

Rys. 4.2 Przekrój poprzeczny obliczanego inżektora parowego z dyszą de Laval

W literaturze napotkano tylko trzy publikacje dotyczące zastosowania inżektorów parowych w układach regeneracyjnego podgrzewania wody kotłowej:

Opis Patentowy nr 33648 z dnia 22.10.1947, autorstwa mgr inż. Tadeusza Janke [48], przedstawiający możliwość zastosowania inżektora parowego zasilanego parą świeżą z kotłów głównych w układzie z bezupustową turbiną kondensacyjną. Odzyskane ciepło służyć miało do podgrzewania wody kotłowej oraz wody w systemach ciepłowniczych. Patent przewidywał także kilku stopniowe podgrzewanie wody, jednak bez jakiejkolwiek naukowej analizy zagadnienia.

Profesor dr hab. inż. Ryszard Gryboś w 1956 roku [35], przedstawił projekt zastosowania inżektorów parowych zasilanych parą świeżą dla istniejących układów z turbinami kondensacyjnymi bezupustowymi. Mieszanina pary służyć miała regeneracyjnemu podgrzewaniu wody zasilającej kotły główne w zbiornikach mieszankowo-odgazowujących.

Publikacja egipskiego badacza A. Hegazy [41] z roku 2007, proponuje zastosowanie inżektorów parowych w celu odzysku ciepła skraplania do podgrzewania regeneracyjnego wody zasilającej kotły, polegającego na wykorzystaniu pary upustowej zamiast pary świeżej zwiększając tym samym dostępny spadek entalpii w początkowych stopniach turbiny.

4.2. Obliczenia wstępne rozpatrywanego układu

W celu wstępnego potwierdzenia postawionej hipotezy wykonano bilans energetyczny dla układu referencyjnego "A" oraz zmodyfikowanego układu "B". Wyznaczono wielkości sprawności obu układów oraz stopień regeneracji układu z zastosowanym inżektorem. W tym celu konieczne było wyznaczenie parametrów pracy inżektora oraz funkcji stanów pary w poszczególnych płaszczyznach kontrolnych. Obliczeń dokonano dla zaczepu pary o pośrednim ciśnieniu 10 barA oraz dla trzech stopni eżekcji $\mathcal{G}=0,2$; $\mathcal{G}=0,167$; oraz $\mathcal{G}=0,143$.

Obliczenia dla modelu układu cieplno-przepływowego wykonano dla następujących założeń [98, 102, 103]:

- czynnikiem roboczym jest para przegrzana, przyjęta jako gaz półdoskonały,
- gazem zasysanym ze skraplacza jest para mokra,
- proces sprężania i rozprężania są przemianami politropowymi,
- proces eżekcji pary zachodzi przy stałym ciśnieniu całkowitym równym ciśnieniu w króćcu ssawnym, (błąd spowodowany niejednorodnym polem ciśnienia w komorze mieszania został uwzględniony za pomocą wprowadzenia współczynnika strat prędkości komory mieszania φ₂),
- w bilansie energii procesu eżekcji pominięto energię kinetyczną zasysanej pary,
- rzeczywisty rozkład prędkości wzdłuż promienia uwzględniono za pomocą określonych wartości współczynników nierównomierność.

Dlatego też, do obliczeń przyjęto model zerowymiarowy przepływu, o parametrach skupionych, reprezentujących średnie energetyczne wartości parametrów.

4.2.1. Algorytm obliczeń parametrów pracy inżektora parowego

Na rysunku 4.4 przedstawiono algorytm wyznaczania parametrów pary charakterystycznych stanach obiegu – płaszczyznach kontrolnych. Wartości W współczynników do określania wielkości strat w podzespołach inżektora wyznaczonych na podstawie prac [15, 24, 32, 35, 41, 94] przedstawiono w tabeli 4.1. Wartość poszukiwanego ciśnienia mieszaniny pary za inżektorem p_L , oraz parametry stanu dla pary zasilającej inżektor dobrano na podstawie wielowariantowych obliczeń.

φ1	Współczynnik strat prędkości dyszy roboczej - sprawność wykresowa	0,95	Goliński [32] Nikiel [69]
φ2	Współczynnik strat prędkości w komorze mieszania (wzór 4.14)	0,975	Drożyński [24] Gryboś [35]
φ ₃	Współczynnik strat prędkości dyfuzora - sprawność wykresowa	0,9	Gryboś [35] Hegazy [41] Perycz [76]
χ	Współczynnik nierównomierności profilu prędkość w przekroju D-D komory mieszania (4.15)	0,93	Drożyński [24] Gryboś [35]
ψ	Współczynnik uśredniania prędkości względem energii kinetycznej / dla ustalonego rozkładu prędkości przy stałym ciśnieniu	0,9	Gryboś [35] Goliński [32]

Tab. 4.1 Współczynniki strat elementów konstrukcyjnych inżektora parowego

Obliczenia przeprowadzono zgodnie ze wzorem definicyjnym stopnia eżekcji.

$$\sigma = \frac{\dot{m}_x}{\dot{m}_c} \tag{4.1}$$

Wykładnik izentropy pary w zależności od stopnia suchości pary wyznaczono z zależności[102]

$$\kappa = 1,035 + 0,1x_c \, \text{dla x} < 1 \tag{4.2}$$

$$\varkappa = 1,3 \text{ dla } x=1 \tag{4.3}$$

Wykładnik politropy uwzględniający straty energii kinetycznej w przepływie przez dyszę roboczą określono na podstawie zależności

$$n = \frac{1}{1 - \varphi_1 \frac{\varkappa - 1}{\varkappa}} \tag{4.4}$$

Zgodnie z równaniem zachowania energii [32, 39, 75, 76] dla dyszy pomiędzy przekrojami C-C oraz N-N, spadek entalpii pary wodnej w przyrządzie ekspansyjnym jest równy różnicy energii kinetycznej [81]

$$\frac{(w_N)^2 - (w'_C)^2}{2} = i_C - i_N \tag{4.5}$$

Zakładając, iż wielkość prędkości pary w'_c na dolocie do dyszy (w przekroju C-C), jest niewspółmiernie mały do podwojonej wielkości spadku entalpii Δi_{C-N} , wielkość tą uznać można za pomijalnie małą. W dalszych obliczeniach przyjęto $w'_c = 0$. Wzór 4.5 zapisano zatem

$$w_N = \sqrt{2(i_C - i_N)}$$
(4.6)

otrzymując zależność na prędkość pary opuszczającej dyszę (w przekroju N-N). Wówczas spadek entalpii przemiany jest równy wielkości jej pracy technicznej zgodnie ze związkiem

$$i_{C} - i_{N} = l_{t_{C-N}} = \frac{n}{n-1} p_{C} v_{C} \left[1 - \left(\frac{p_{N}}{p_{C}}\right)^{\frac{n-1}{n}} \right]$$
(4.7)

Podstawiając zależność 4.7 do związku 4.6 otrzymano wzór na prędkość pary opuszczającej dyszę roboczą

$$w_{N} = \sqrt{2 \frac{n}{n-1} p_{C} v_{C} \left[1 - \left(\frac{p_{N}}{p_{C}}\right)^{\frac{n-1}{n}}\right]}$$
(4.8)

Zgodnie z przyjętymi założeniami rozkład prędkości w przekroju N-N u wylotu z dyszy przyjęto jako równomierny.

Poszukiwaną wartość entalpii końca rozprężania izentropowego określono na podstawie wykresu i – s dla pary wodnej (rys 4.3), natomiast wartość entalpii politropowego rozprężania w dyszy roboczej wyznaczono z uwzględnieniem strat energii kinetycznej za pomocą współczynnika φ_1

$$i_N = i_{N \, izen} + (1 - \varphi_1) \, (i_c - i_{N \, izen}) \tag{4.9}$$

W komorze mieszania inżektora parowego następuje wymiana pędów między cząsteczkami pary, traktowana jako rezultat ich niesprężystego zderzania się. Związana jest ona z pewną stratą energii kinetycznej obu mieszających się strumieni. Celem wyznaczenia wypadkowej prędkości mieszających się strumieni posłużono się zasadą zachowania pędu. Jest ona słuszna dzięki założeniu stałego ciśnienia w komorze mieszania równej ciśnieniu w króćcu ssawnym inżektora [35].

$$\dot{m}_c w_c + \dot{m}_x w'_x = \dot{m}_D w_{Ds} \tag{4.10}$$

Przyjmując bilans strumieni mas

$$\dot{m}_c + \dot{m}_x = \dot{m}_D, \tag{4.11}$$

oraz wzór definicyjny 4.1 dla stopnia eżekcji 6, otrzymano zależność na teoretyczną prędkość pary w płaszczyźnie D-D

$$w_{Ds} = \frac{w_N}{(1+6)} + \frac{w_X}{\left(1+\frac{1}{6}\right)}$$
(4.12)

Zakładając, że rzut prędkość pary zasysanej na oś przepływu strumienia pary zasilającej $w'_x = 0$ otrzymano

$$w_{Ds} = \frac{w_N}{(1+6)} \tag{4.13}$$

Wyrażenie 4.13 było by słuszne przy przyjęciu stałego ciśnienia w komorze mieszania oraz równomiernego rozkładu prędkości. W celu uwzględnienia odstępstw od przyjętych założeń, od strony obliczeniowej, wprowadzono współczynnik strat prędkości w komorze mieszania

$$\varphi_2 = \frac{w_{Dr}}{w_{Ds}} \tag{4.14}$$

oraz współczynnik nierównomierności profilu prędkości:

$$\chi = \frac{w_{Dr}}{w_D} \tag{4.15}$$

Podstawiając zależności 4.14 oraz 4.15 do związku 4.13 otrzymano zależność na uśrednioną wartość prędkości na dolocie do dyfuzora

$$w_{D=} \frac{\varphi_2 w_N}{\chi (1+6)}$$
(4.16)

Z bilansu energetycznego komory mieszania określono wartość entalpii na dolocie do dyfuzora (w przekroju D-D)

$$i_c \dot{m}_c + i_x \dot{m}_x = \left[\frac{(\Psi w_D)^2}{2000} + i_D\right] \dot{m}_D$$
(4.17)

Wartość entalpii punktu C jest równa sumie entalpii spoczynkowej w płaszczyzny N-N oraz energii kinetycznej rozprężanej w dyszy pary

$$i_c = \left[\frac{(\Psi w_D)^2}{2000} + i_N\right]$$
(4.18)

Podstawiając 4.1, 4.11, oraz 4.18 do zależności 4.17 otrzymano wzór na wartość entalpii pary w płaszczyźnie D-D

$$i_D = \frac{\left(\frac{w_N^2}{2000} + i_N\right) + i_X 6}{1+6} - \frac{(\Psi w_D)^2}{2000}$$
(4.19)

Wartość entalpii pary opuszczającej dyfuzor (w płaszczyźnie L-L), zweryfikowano na podstawie wyników ponownie wykonanego bilansu energetycznego inżektora jako całości

$$i_L = \frac{i_c + i_x \, 6}{1 + 6} - \frac{w_L^2}{2000} \tag{4.20}$$

Wówczas wartość poszukiwanej entalpii izentropowego sprężania wyznaczono na podstawie zależności

$$i_{L\,izent} = i_L - (1 - \eta_D) (i_L - i_D)$$
(4.21)

Wyniki obliczeń wykonanych na podstawie algorytmu przedstawionego w procedurze 4.1-4.21 zestawiono w tabeli 4.2.

б	[-]	ZAŁOŻONY SROPIEŃ EŻEKCJI	0,200	0,167	0,143	
p _c	[Pa]	Ciśnienie pary zasilającej inżektor	10			
i _c	[kJ/kg]	Entalpia pary zasilającej inżektor	3025			
v _c	[m ³ /kg]	Objętość właściwa pary zasilającej inżektor		0,2518		
p _x	[Pa]	Ciśnienie pary wylotowej z turbiny	0,066			
w _N	[m/s]	Prędkość pary za dyszą inżektora	1238,18			
i Nizen	[kJ/kg]	Entalpia pary za dyszą dla rozprężania izentropowego	2190			
i _N	[kJ/kg]	Entalpia pary za dyszą dla rozprężania rzeczywistego	2231,75			
W _D	[m/s]	Prędkość strumienia wypadkowego na dolocie do dyfuzora	1081,7	1112,6	1135,8	
i _D	[kJ/kg]	Entalpia strumienia wypadkowego na dolocie do dyfuzora	2408,0	2397,2	2388,5	
i Lizen	[kJ/kg]	Entalpia pary na wylocie z dyfuzora przy izentropowym rozprężaniu	n rozprężaniu 2852,9 28		2878,2	
i _L	[kJ/kg]	Entalpia pary za dyfuzorem	2902,4 2919,6 2932,6		2932,6	
t _L	[°C]	Temperatura pary za dyfuzorem	213 222,7 229,5			
р _L	[Pa]	Ciśnienie pary za dyfuzorem	103000	118500	132500	

Tab. 4.2 Wyznaczone i obliczone parametry stanu pary w płaszczyznach kontrolnych inżektora parowego dla przyjętych stopni eżekcji

Rys. 4.3 Proces mieszania się strumieni w inżektorze parowym na wykresie i-s dla stopnia eżekcji G=0,143

Rys. 4.4 Algorytm wyznaczania parametrów pracy inżektora parowego

4.2.2. Bilans energetyczny obiegu z inżektorem parowym

Dla potrzeb obliczeń bilansu energetycznego przyjęto wyznaczone parametry stanu pary za inżektorem dla stopnia eżekcji G=0,143 (tabela 4.2). Dane wejściowe do bilansu dla układu referencyjnego A i zmodyfikowanego B, oraz obliczone wielkości jednostkowych strumieni masy zestawiono w tabelach 4.3 oraz 4.4.

Układ referencyjny wariant A							
Płaszczyzny	p abs.	t	i	'n			
kontrolne	[barA]	[°C]	[kJ/kg]	[kg/s]			
1	59,5	520	3470	1			
2	10	287	3025	0,1046			
3	6,6	38	2300	0,8954			
4	0,05	32	2290	0,8954			
5	0,05	32	138	0,8954			
6	10	32	138	0,8954			
7	1,3	105	440	1			
8	70	105	440	1			
9=2	10	287	3025	0,1046			

Tab. 4.3 Parametry termodynamiczne pary w płaszczyznach kontrolnych układu referencyjnego (Wariant A)

Obliczenia dla układu referencyjnego (wariant A) przeprowadzono zgodnie ze wzorami 4.22 oraz 4.23.

Strumieni masy pary w płaszczyźnie kontrolnej 2 dla wariantu A układu, określono z bilansu energetycznego zbiornika mieszankowego zgodnie z zależnością

$$\dot{m}_2 = \frac{(i_7 - i_6)}{(i_2 - i_6)} \tag{4.22}$$

Wielkości pozostałych strumieni wyznaczono ze związku

$$\dot{m}_3 = \dot{m}_4 = \dot{m}_5 = \dot{m}_6 = 1 - \dot{m}_2 \tag{4.23}$$

Obliczenia dla wariantu B, przedstawionego na schemacie cieplno-przepływowym na rysunku 4.1, przeprowadzono wykorzystując równania 4.24-4.27. Wielkości wejściowe do obliczeń zostały zestawione w tabeli 4.4.

Układ zmodyfikowany wariant B, 6=0,1428								
Diagrazuzna kontrolna	p abs.	t	i	'n				
Fiaszczyzna kontrolna	[PaA]	[°C]	[kJ/kg]	[kg/s]				
1	59,5	520	3470	1				
2	10	287	3025	0,094				
3	6,6	38	2300	0,906				
Х	6,6	38	2300	0,0134				
4	0,05	32	2290	0,8926				
5	0,05	32	138	0,8926				
6	10	32	140	0,8926				
7	1,3	105	440	1				
8	70	105	440	1				
9	1,325	229,5	2932,6	0,1074				

Tab. 4.4 Parametry termodynamiczne pary w płaszczyznach kontrolnych zmodyfikowanego układu (Wariant B)

Strumienie masy w poszczególnych płaszczyznach kontrolnych wyznaczono z zależności

$$\dot{m}_2 = \frac{(i_7 - i_6)}{(i_9 - i_6)(1 + \sigma)} \tag{4.24}$$

$$\dot{m}_4 = \dot{m}_5 = \dot{m}_6 = 1 - \dot{m}_2 - \dot{m}_x \tag{4.25}$$

$$\dot{m}_3 = 1 - \dot{m}_2 \tag{4.26}$$

$$\sigma = \frac{\dot{m}_x}{\dot{m}_2} \tag{4.27}$$

Wyznaczone wielkości strumieni masy w płaszczyznach kontrolnych rozpatrywanych układów posłużyły do wyznaczenia sprawności cieplnej obydwu wariantów oraz stopnia regeneracji obiegu w wyniku zastosowanej modyfikacji. Sprawność cieplną układów regeneracyjnych wyznaczono z równania:

$$\eta_{C} = \frac{\dot{m}_{1} (i_{1} - i_{3}) - \dot{m}_{2} (i_{2} - i_{3})}{\dot{m}_{8} (i_{1} - i_{8})}$$
(4.28)

których sprawność dla wariantu A wynosi $\eta_{CA} = 0,3611$, natomiast dla wariantu B $\eta_{CB} = 0,3636$. Stopień regeneracji układu definiowany jako względny przyrost sprawności układu w wyniku zastosowania jego modyfikacji, wyznaczono ze wzoru:

$$\mathcal{E} = \frac{\eta_{CB} - \eta_{CA}}{\eta_{CA}} \tag{4.29}$$

Stopień regeneracji dla założonego stosunku eżekcji wyniósł $\varepsilon_{6=0,143} = 0,703$ %.

Wielowariantowe obliczenia przeprowadzono, również dla stopnia eżekcji G=0,1667, przy obniżonej temperaturze wody zasilającej kocioł z t₈= 105 °C o 5 K do t₈= 100 °C, ze względu na konieczność obniżenia ciśnienia panującego w zbiorniku mieszankowym. Uzyskane wartości sprawności układu wyniosły odpowiednio: $\eta_{CA} = 0,3604$ oraz $\eta_{CB} = 0,3631$. Dla zwiększonego stopnia eżekcji uzyskano wyższy stopień regeneracji obiegu $\varepsilon_{6=0,167} = 0,748$ %. Wyniki obliczeń dla stopnia eżekcji G=0,1667 oraz G=0,1428 zestawiono w tabeli 4.5. Dla stopnia eżekcji G=0,2 przy temperaturze wody zasilającej $t_8 = 105$ °C, otrzymano stopień regeneracji układu $\varepsilon_{6=0,2} = 0,871$ %.

Stopień eżekcji	σ	0,143	0,167	0,2
Sprawność cieplna obiegu A	η_{CA}	0,3611	0,3604	0,3604
Sprawność cieplna obiegu B	η_{CB}	0,3636	0,3631	0,3635
Stopień regeneracji	[%] 3	0,703	0,748	0,871

Tab. 4.5 Sprawności cieplne układów oraz stopień ich regeneracji dla różnych stopni eżekcji

4.3. Podsumowanie

Wyniki przeprowadzonej analizy potwierdzają postawioną hipotezę. Zastosowanie inżektora parowego w układzie zasilania mieszankowego wymiennika ciepła skutkuje zmniejszeniem zapotrzebowania pary upustowej z turbiny, zwiększając tym samym dysponowany spadek entalpii w turbinie. Dla rozpatrywanego przypadku (G=0,143) strumień masy pary upustowej zmalał o $\Delta \dot{m}_2 = 0,0106$, Dzięki czemu dostępny spadek entalpii dla turbiny wzrósł o $\Delta i = 7,685$ kJ/kg. Zmniejszeniu ulega również ilość ciepła wyprowadzonego z obiegu w skraplaczu. Dla stopnia eżekcji G=0,143 ilość ciepła oddanego w skraplaczu zmalała o $\Delta i = 6,054$ kJ/kg. Analiza wykazała również, iż zwiększanie stopnia eżekcji oraz zastosowanie pary zaczepowej z jak najniższego poziomu energetycznego skutkuje wzrostem stopnia regeneracji układu.

Podstawiając zależność 4.28 dla obydwu wariantów, do związku 4.29 otrzymano nową postać zależności na stopień regeneracji układu

$$\mathcal{E} = \frac{\dot{m}_1 (i_1 - i_3) - \dot{m}_{2B} (i_2 - i_3)}{\dot{m}_1 (i_1 - i_3) - \dot{m}_{2A} (i_2 - i_3)} - 1$$
(4.30)

Z zależności tej wynika wprost, iż aby uzyskać dodatni stopień regeneracji ($\varepsilon > 0$) konieczne jest zmniejszenie zapotrzebowania na pary upustowej, co można zapisać w postaci nierówności:

r

$$\dot{n}_{2A} > \dot{m}_{2B} \tag{4.31}$$

Dla pogłębienia analizy skutków zastosowania inżektora parowego konieczne jest wyznaczenie zbioru możliwych do uzyskania parametrów pary opuszczającej inżektor, zasilającej podgrzewaczy regeneracyjnych wody kotłowej.

W celu uzyskania żądanego ciśnienia na wylocie z inżektora wymaga stosunkowo wysokiego ciśnienia pary zasilającej. Podobny stopień podgrzewu wody zasilającej uzyskać można stosując zasilanie zbiornika mieszankowego parą bezpośrednio z upustu, o znacznie niższym ciśnieniu, osiągając wyższy rozporządzalny spadek entalpii w turbinie. Konieczne zatem jest rozpoznanie możliwości zastosowania inżektorów parowych w bardziej złożonych układach.

5. DOBÓR PARAMETRÓW PRACY INŻEKTORA PAROWEGO

Zastosowanie inżektora w celu uzyskania żądanego ciśnienia pary na wylocie z urządzenia inżektorowego wymaga stosunkowo wysokiego ciśnienia pary zasilającej. Konieczne zatem jest, wyznaczenie zbioru możliwych do uzyskania parametrów pracy pary opuszczającej inżektor zasilający podgrzewacze regeneracyjne wody kotłowej.

5.1. Wyznaczenie parametrów pary zasilającej inżektor

Parametry pary upustowej przyjęto na przykładzie parowego układu energetycznego *CST*, zbiornikowca *LNG* o pojemności 138 tyś m³ z roku 2003 opisanego w rozdziale trzecim. W tabeli 5.1 przedstawiono parametry pary obiegu. W dwukadłubowej turbinie napędu głównego zastosowano trzy upusty pary: wysokiego (19,5 barA,) pośredniego (6,6 barA) oraz niskiego ciśnienia (1,5 barA). Ponadto w układzie regeneracyjnego podgrzewania wody kotłowej wykorzystano parę odlotową z turbiny napędzającej pompę wody kotłowej o ciśnieniu 3,1 barA.

Parametry pary wyznaczone na podstawie krzywej ekspansji wyznaczonej przy wykorzystaniu punktów pomiarowych dostępnych dla turbiny UA-400 (Rysunek 5.1) przedstawiono w tabeli 5.1.

	Ciśnienie Temp		Enta	x	
	[barA]	[°C]	[kcal/kg]	[kJ/kg]	[-]
Para przegrzana (na wyjściu z kotła)	61	525	831,3	3481	1
Para przegrzana (dolot do turbiny napędu głównego)	59,5	520	828,7	3470	1
Upust pary wysokiego ciśnienia	19,5	372	761	3186,2	1
Para odlotowa turbiny wysokiego ciśnienia	6,6	245	703	2943	1
Upust pary pośredniego ciśnienia	6,6	245	703	2943	1
Para wylotowa turbiny pompy wody kotłowej	3,1	310	742	3100	1
Upust pary niskiego ciśnienia	1,5	131	653	2734	1
Para wylotowa turbiny zespołu prądotwórczego	0,075	40	587	2452	0,95
Para wylotowa z turbiny niskiego ciśnienia	0,06	38	551	2294	0,89
Para 10 Bar (wyznaczone z krzywej rozprężania)	10	287	722,5	3025	1
Para 3 Bar (wyznaczone z krzywej rozprężania)	3	170	669,5	2803	1

Tab. 5.1 Parametry stanu i własności termodynamiczne pary wodnej obiegu CST zbiornikowca LNG

Rys. 5.1 Linia ekspansji pary wodnej w turbinie URA-400

5.2. Określenie parametrów pary wylotowej inżektora pierwszego stopnia

Dla przyjętych i wyznaczonych parametrów pary upustowej o ciśnieniach 19,5 barA; 10 barA; 6,6 barA; 3barA; 1,5 barA; przeprowadzono obliczenia parametrów strumienia mieszaniny pary zasilającej (upustowej z turbiny napędu głównego) oraz zasysanej (pary odlotowej z turbiny napędu głównego). Obliczenia przeprowadzono również dla pary odlotowej z turbinowej pompy wody zasilającej kocioł, której para w rzeczywistym układzie *CST* stanowi jedno ze źródeł ciepła w regeneracyjnym układzie podgrzewania wody kotłowej. Obliczeń dokonano zgodnie z algorytmem przedstawionym na rysunku 4.4.

Wykładnik izentropy, zgodnie z zależnością 4.3, dla pary przegrzanej przyjęto $\varkappa = 1,3$, Wielkości wyznaczone w poszczególnych płaszczyznach kontrolnych inżektora parowego, zgodne z rysunkiem 4.2 przedstawiono w tabelach 5.2-5.6. Na rysunku 5.2 przedstawiono zależność ciśnienia pary opuszczającej inżektor w funkcji stopnia eżekcji. Wyznaczono również równania funkcji opisującej zmianę ciśnienia za inżektorem w zależności od założonego stopnia eżekcji. Szczegółowe wyniki obliczeń parametrów pracy w poszczególnych przekrojach kontrolnych przedstawiono w załączniku nr 1 (Z1.1.).

	Upust pary wysokiego ciśnienia 19,5 barA											
б	[-]	Założony stopień eżekcji	0,667	0,500	0,430	0,376	0,333	0,250	0,200	0,167	0,143	
pc	[barA]	Ciśnienie pary zasilającej					19,5					
ic	[kJ/kg]	Entalpia pary zasilającej					3187,5					
Vc	[m3/kg	Objętość właściwa pary zasil.					0,148					
p _x	[barA]	Ciśnienie pary zasysanej		0,066								
Wn	[m/s]	Prędkość rozprężonej pary					1369,9					
i _{Nizen}	[kJ/kg]	Entalpia pary dla izentropowego rozprężania		2181,8								
i _N	[kJ/kg]	Entalpia pary za dyszą					2232,1					
Wd	[m/s]	Prędkość pary przed dyfuzorem	861,7	957,4	1004,9	1043,8	1077,1	1148,9	1196,8	1231,0	1256,6	
i _D	[kJ/kg]	Entalpia pary przed dyfuzorem	2521,5	2509,0	2500,1	2491,4	2482,9	2461,7	2445,2	2432,3	2422,0	
i _{Lizen}	[kJ/kg]	Entalpia mieszaniny pary dla izentropowego sprężania	2799,8	2851,8	2877,3	2898,0	2915,7	2953,6	2978,5	2996,3	3009,5	
iL	[kJ/kg]	Entalpia mieszaniny pary za dyfuzorem	2830,7	2889,9	2919,2	2943,2	2963,8	3008,2	3037,8	3058,9	3074,8	
tı	[°C]	Temperatura mieszaniny pary za dyfuzorem	175,5	206,2	221,3	233,7	244,3	267,1	282,2	293,0	301,1	
\mathbf{p}_1	[barA]	Ciśnienie pary za dyfuzorem	0,359	0,504	0,603	0,71	0,809	1,106	1,38	1,625	1,84	

Tab. 5.2 Parametry pracy inżektora parowego przy zasilaniu parą upustową o ciśnieniu 19,5 barA

W tabeli 5.3 przedstawiono wyniki obliczeń inżektora parowego zasilanego z upustu pary o ciśnieniu 10 barA. Wyniki obliczeń, ze względu na możliwe do uzyskania ciśnienia pary opuszczającej inżektor, wskazują na możliwość wykorzystania pary odlotowej z inżektora w zależności od stopnia eżekcji zarówno do podciśnieniowych jak i mieszankowych wymienników ciepła.

.

	Para o ciśnieniu 10 barA – wyznaczona na podstawie krzywej rozprężania											
б	[-]	Założony stopień eżekcji	0,667	0,500	0,430	0,376	0,333	0,250	0,200	0,167	0,143	
pc	[barA]	Ciśnienie pary zasilającej					10					
ic	[kJ/kg]	Entalpia pary zasilającej					3025					
Vc	[m3/kg	Objętość właściwa pary zasil.					0,252					
p _x	[barA]	Ciśnienie pary zasysanej		0,066								
Wn	[m/s]	Prędkość rozprężonej pary					1238,2					
i _{Nizen}	[kJ/kg]	Entalpia pary dla izentropowego rozprężania		2190								
i _N	[kJ/kg]	Entalpia pary za dyszą					2231,8					
w _d	[m/s]	Prędkość pary przed dyfuzorem	778,9	865,4	908,3	943,4	973,6	1038,5	1081,7	1112,6	1135,8	
iD	[kJ/kg]	Entalpia pary przed dyfuzorem	2473,3	2462,2	2454,5	2447,0	2439,8	2421,9	2408,0	2397,2	2388,5	
i_{Lizen}	[kJ/kg]	Entalpia mieszaniny pary dla izentropowego sprężania	2707,2	2749,6	2770,4	2787,3	2801,7	2832,6	2852,9	2867,4	2878,2	
iL	[kJ/kg]	Entalpia mieszaniny pary za dyfuzorem	2733,2	2781,5	2805,5	2825,1	2842,0	2878,2	2902,4	2919,6	2932,6	
tı	[°C]	Temperatura mieszaniny pary za dyfuzorem	125,0	150,4	162,9	173,2	182,1	201,0	213,0	222,7	229,5	
\mathbf{p}_1	[barA]	Ciśnienie pary za dyfuzorem	0,307	0,418	0,493	0,566	0,641	0,847	1,03	1,185	1,325	

Tab. 5.3 Parametry pracy inżektora parowego przy zasilaniu parą upustową o ciśnieniu 10 bar

W tabeli 5.4 przedstawiono wyniki obliczeń inżektora regeneracyjnego dla pośredniego upustu pary o ciśnieniu absolutnym 6,6 barA. Otrzymane wyniki wskazują na możliwość wykorzystania pary opuszczającej komorę mieszania inżektora jedynie w podciśnieniowym wymienniku ciepła dla założonych stopni eżekcji $G = \langle 0, 142; 0, 500 \rangle$.

		١	Upust pary	y pośrednie	ego ciśnier	nia 6,6 bar	4						
б	[-]	Założony stopień eżekcji	0,667	0,500	0,430	0,376	0,333	0,250	0,200	0,167	0,143		
pc	[barA]	Ciśnieni pary zasilającej					6,6						
ic	[kJ/kg]	Entalpia pary zasilającej					2943						
Vc	[m3/kg	Objętość właściwa pary zasil.					0,352						
px	[barA]	Ciśnienie pary zasysanej		0,066									
Wn	[m/s]	Prędkość rozprężonej pary		1160,7									
i _{Nizen}	[kJ/kg]	Entalpia pary dla izentropowego rozprężania		2200									
i _N	[kJ/kg]	Entalpia pary za dyszą					2237,2						
Wd	[m/s]	Prędkość pary przed dyfuzorem	730,1	811,3	851,4	884,4	912,7	973,5	1014,1	1043,0	1064,8		
i _D	[kJ/kg]	Entalpia pary przed dyfuzorem	2450,6	2440,6	2433,8	2427,1	2420,7	2404,8	2392,5	2382,9	2375,3		
i _{Lizen}	[kJ/kg]	Entalpia mieszaniny pary dla izentropowego sprężania	2660,7	2698,2	2716,7	2731,7	2744,5	2771,8	2789,9	2802,7	2812,3		
i _L	[kJ/kg]	Entalpia mieszaniny pary za dyfuzorem	2684,0	2726,9	2748,1	2765,5	2780,5	2812,6	2834,0	2849,3	2860,8		
tı	[°C]	Temperatura mieszaniny pary za dyfuzorem	99,3	122,0	133,2	142,4	150,3	162,3	178,6	186,7	192,7		
p_1	[barA]	Ciśnienie pary za dyfuzorem	0,274	0,366	0,426	0,485	0,544	0,703	0,84	0,959	1,061		

Tab. 5.4 Parametry pracy inżektora parowego przy zasilaniu parą upustową o ciśnieniu 6,6 bar

W tabelach 5.5 oraz 5.6 przedstawiono obliczenia inżektora parowego dla pary zasilającej około 3 barA. Pierwszym źródłem pary zasilającej jest para odlotowa z turbinowych pomp

wody zasilającej kotły, która jest w wyższym stopniu przegrzana – posiada wyższą entalpię. Drugie źródło jest to para o ciśnieniu 3 barA, której parametry zostały wyznaczone na podstawie krzywej rozprężania (Rys. 5.1). Obliczeń dokonano dla stopnia eżekcji $\mathcal{O} = \langle 0, 142; 0, 429 \rangle$. Dla wyższych stopni eżekcji uzyskano zbyt niskie ciśnienie pary opuszczającej eżektor. Wyniki obliczeń wykazały brak zasadności stosowania znacznego przegrzania pary, gdyż nie przekłada się ono na wzrost ciśnienia pary opuszczającej inżektor. Warte rozważenia natomiast mogą okazać się chłodnice pary zasilającej dzięki którym obniżeniu ulegnie entropia pary zasilającej.

	Para odlotowa turbinowej pompy wody zasilającej kocioł o ciśnieniu 3,1 barA								
б	[-]	Założony stopień eżekcji	0,429	0,376	0,333	0,250	0,200	0,167	0,143
pc	[barA]	Ciśnieni pary zasilającej		_		3,1			
ic	[kJ/kg]	Entalpia pary zasilającej				3090			
Vc	[m3/kg	Objętość właściwa pary zasil.	0,862						
$p_{\rm x}$	[barA]	Ciśnienie pary zasysanej	0,066						
Wn	[m/s]	Prędkość rozprężonej pary	1178,83951						
i _{Nizen}	[kJ/kg]	Entalpia pary dla izentropowego rozprężania	2392,07						
i _N	[kJ/kg]	Entalpia pary za dyszą				2426,966	5		
Wd	[m/s]	Prędkość pary przed dyfuzorem	864,7	898,2	926,9	988,7	1029,9	1059,3	1081,4
i _D	[kJ/kg]	Entalpia pary przed dyfuzorem	2572,2	2570,5	2568,4	2561,5	2555,3	2549,9	2545,5
i_{Lizen}	[kJ/kg]	Entalpia mieszaniny pary dla izentropowego sprężania	2823,1 2842,2 2858,5 2893,3 2916,4 2932,8 2					2945,1	
i _L	[kJ/kg]	Entalpia mieszaniny pary za dyfuzorem	2851,0 2872,4 2890,7 2930,2 2956,5 2975,3					2989,5	
t1	[°C]	Temperatura mieszaniny pary za dyfuzorem	185,7	196,8	206,3	226,6	240,1	249,7	256,9
\mathbf{p}_1	[barA]	Ciśnienie pary za dyfuzorem	0,283	0,313	0,343	0,423	0,49	0,546	0,594

Tab. 5.5 Parametry pracy inżektora parowego zasilanego parą odlotową turbinowej pompy wody zasilającej kocioł, o ciśnieniu 3,1 barA

Tab. 5.6 Parametry pracy inżektora parowego przy zasilaniu parą upustową o ciśnieniu 3 barA

	Para o ciśnieniu 3 bar – wyznaczona na podstawie krzywej rozprężania											
б	[-]	Założony stopień eżekcji	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143		
pc	[barA]	Ciśnieni pary zasilającej	3									
ic	[kJ/kg]	Entalpia pary zasilającej				28	03					
Vc	[m3/kg	Objętość właściwa pary zasil.	0,667									
p _x	[barA]	Ciśnienie pary zasysanej	0,066									
Wn	[m/s]	Prędkość rozprężonej pary	1017,6									
İ _{Nizen}	[kJ/kg]	Entalpia pary dla izentropowego rozprężania	2222,0									
i _N	[kJ/kg]	Entalpia pary za dyszą				225	1,1					
Wd	[m/s]	Prędkość pary przed dyfuzorem	711,2	746,5	775,3	800,1	853,5	889,0	914,4	933,5		
i _D	[kJ/kg]	Entalpia pary przed dyfuzorem	2407,7	2402, 4	2397, 3	2392, 3	2380, 0	2370, 6	2363, 2	2357,3		
i _{Lizen}	[kJ/kg]	Entalpia mieszaniny pary dla izentropowego sprężania	2610,9	2625, 4	2637, 1	2647, 1	2668, 5	2682, 7	2692, 7	2700,2		
iL	[kJ/kg]	Entalpia mieszaniny pary za dyfuzorem	2633,5	2650, 1	2663, 8	2675, 5	2700, 6	2717, 4	2729, 3	2738,3		
tı	[°C]	Temperatura mieszaniny pary za dyfuzorem	73,4	82,2	89,4	95,6	109,1	118,0	124,4	129,3		
pı	[barA]	Ciśnienie pary za dyfuzorem	0,271	0,308	0,345	0,38	0,471	0,547	0,611	0,664		
Otrzymane wyniki obliczeń inżektora zasilanego parą z upustu niskiego ciśnienia (LP Bleed – 1,5 barA) pominięto w dalszej analizie, ze względu na niskie wartości ciśnienia pary opuszczającej inżektor ($p_l = 0,236$ barA dla $\mathcal{O} = 0,142$), praktycznie dyskwalifikujące jego wykorzystanie w układzie regeneracyjnego podgrzewania wody.

Na rysunku 5.2 przedstawiono zbiór możliwych parametrów pary opuszczającej inżektor w proponowanych układach, jako zależności ciśnienia pary opuszczającej inżektor w funkcji stopnia eżekcji.

Rys. 5.2 Zależność ciśnienia mieszaniny pary opuszczającej inżektor parowy w funkcji stopnia eżekcji

5.3. Określenie parametrów pary wylotowej z inżektora drugiego stopnia (dla zespołu inżektorowego)

Zastosowanie nadciśnieniowych, powierzchniowych wymienników ciepła wyższych stopni (dla temperatury podgrzania wody zasilającej powyżej 100 °C), wymaga stosowania wyższych ciśnień pary zasilającej wymiennik (pary grzewczej). W celu uzyskania wyższych ciśnień pary na odlocie z regeneracyjnych inżektorów parowych, konieczne jest zastosowanie pary upustowej z wyższych poziomów energetycznych. W wyniku zastosowania wyższych upustów pary zmniejszeniu ulega dostępny spadek entalpii w turbinie, co niekorzystnie przekłada się na stopień regeneracji układu. W celu uzyskania wyższych ciśnień pary zasilającej podgrzewacze, rozważono zastosowanie dwustopniowego, szeregowego zespołu inżektorów. W rozwiązaniu tym inżektor pierwszego stopnia zasysa parę odlotową z turbiny, natomiast inżektor drugiego stopnia zasysa parę odlotową pierwszego stopnia.

W celu przeprowadzenia badań numerycznych układów wykorzystujących dwustopniowe sprężanie pary odlotowej z turbiny, konieczne jest wyznaczenie parametrów pracy układów inżektorowych. Parametry wyznaczono dla dwóch wariantów. W pierwszym przedstawionym na rysunku nr 5.3 oba inżektory zasilane są parą upustową z tego samego zaczepu. W drugim wariancie, którego schemat cieplno-przepływowy przedstawiono na rysunku 5.4 każdy z inżektorów zasilany jest parą z różnego poziomu energetycznego.

Rys. 5.3 Schemat cieplno-przepływowy dwustopniowego zespołu inżektorowego zasilanego z jednego upustu pary

Rys. 5.4 Schemat cieplno-przepływowy dwustopniowego zespołu inżektorowego zasilanego z osobnych zaczepów pary

Parametry pracy zespołu wyznaczono na podstawie algorytmu przedstawionego na rysunku 4.4. Do wielowariantowych obliczeń wykorzystano dostępne pomiarowo w eksploatacji parametry pary zaczepowej o ciśnieniu 6,6 barA, oraz wyznaczonej na bazie rzeczywistej krzywej ekspansji 3,0 barA, 10 barA (tabela 5.1).

Szczegółowe wyniki przedstawiono w załączniku nr 1 (Z1.2.). Możliwe do uzyskania wartości ciśnienia pary opuszczającej zespół inżektorowy, zasilany z upustu pary 3,0 oraz 6,6 barA przedstawiono na rysunku 5.5. W układzie tym przy zastosowaniu stopnia eżekcji dla pierwszego inżektora w zakresie $\sigma_{1s} = (0,143 - 0,5)$ oraz stopnia eżekcji drugiego inżektora $\sigma_{2s} = (0,143 - 0,667)$, możliwe jest uzyskanie pary o ciśnieniu 2,41 braA oraz temperaturze 223,1 °C.

Rys. 5.5 Zależność ciśnienia mieszaniny pary opuszczającej zespół inżektorowy zasilany parą 3,0 oraz 6,6 barA funkcji pierwszego oraz drugiego stopnia eżekcji $p_{l2} = f(\sigma_{s1}, \sigma_{s2})$

Przy zastosowaniu pary upustowej dla pierwszego stopnia 3,0 barA oraz drugiego stopnia 10 barA, oraz stopniu eżekcji odpowiednio $\sigma_{s1} = (0,143 - 0,5)$ i $\sigma_{s2} = (0,143 - 0,667)$ możliwe jest uzyskanie pary o ciśnieniu 2,97 braA oraz temperaturze 259,5°C. Na rysunku 5.6 przedstawiono zależność ciśnienia pary opuszczającej zespół inżektorowy od stopni eżekcji poszczególnych inżektorów.

Pl2=f(61s,62s)

Rys. 5.6 Zależność ciśnienia mieszaniny pary opuszczającej zespół inżektorowy zasilany parą 3,0 oraz 10 barA funkcji pierwszego oraz drugiego stopnia eżekcji $p_{l2} = f(\sigma_{1s}, \sigma_{2s})$

Na rysunkach 5.7 oraz 5.8 przedstawiono kolejno zależności możliwych do uzyskania ciśnień pary opuszczającej zespół inżektorowy dla układów zasilanych parą odlotową 6,6 barA dla obydwu inżektorów oraz 6,6 i 10 barA.

Rys. 5.7 Zależność ciśnienia mieszaniny pary opuszczającej zespół inżektorowy zasilany parą 6,6 bar A w funkcji pierwszego oraz drugiego stopnia eżekcji $p_{l2} = f(\sigma_{1s}, \sigma_{2s})$

Dla pierwszego wariantu przy zastosowaniu stopni eżekcji odpowiednio $\sigma_{s1}, \sigma_{s2} = 0,143 - 0,667$ możliwe jest uzyskanie pary o parametrach ciśnieniu 2,89 barA oraz temperaturze 231,6 °C. Przy zasilaniu parą upustową o ciśnieniu 6,6 oraz 10 barA uzyskać można ciśnienie pary 3,57 barA i temperaturze 268 °C.

Rys. 5.8 Zależność ciśnienia mieszaniny pary opuszczającej zespół inżektorowy zasilany parą 6,6 oraz 10 barA funkcji pierwszego oraz drugiego stopnia eżekcji $p_{l2} = f(\sigma_{s1}, \sigma_{s2})$

5.4. Podsumowanie

Wyniki obliczeń wskazują, iż zwiększanie stopnia eżekcji (co pozytywnie wpływa na stopień regeneracji) skutkuje spadkiem ciśnienia oraz entalpii pary opuszczającej inżektor. Spadek ten spowoduje natomiast zmniejszenie możliwej do uzyskania maksymalnej temperatury wody zasilającej kocioł, co przełoży się na zmniejszenie stopnia regeneracji układu.

Zastosowanie wyższych parametrów pary zasilającej inżektor (ciśnienie i stopień przegrzania) powoduje wzrost ciśnienia pary opuszczającej inżektor, a tym samy umożliwia uzyskanie wyższych temperatur wody zasilającej oraz stwarza szersze możliwości użytecznego zastosowania strumienia pary odlotowej z inżektora. Jednak stosowanie pary zaczepowej z turbiny o wyższych parametrach, zmniejsza dostępny spadek i równocześnie obniżając sprawność układu.

Z powyższego wynika potrzeba rozpoznania optymalnych wartości parametrów pracy inżektorów dla uzyskania możliwie najwyższego stopnia regeneracji układu.

6. BADANIA NUMERYCZNE UKŁADÓW Z ZASTOSOWANIEM INŻEKTORÓW PAROWYCH DO REGENERACYJNEGO PODGRZEWANIA WODY ZASILAJĄCEJ KOCIOŁ PAROWY

Wyznaczone w rozdziale 5 parametry pary opuszczającej inżektor parowy zastosowano jako dane wejściowe do wielowariantowych obliczeń bilansów energetycznych, układów wykorzystujących różne typy podgrzewaczy regeneracyjnych. Badania przeprowadzono zgodnie z algorytmem programu badań przedstawionym w podrozdziale 6.1. Wyniki obliczeń przedstawiono w załączniku nr 2.

6.1. Program badań numerycznych

W celu zapewnienia warunków porównywalności, przeprowadzono obliczenia prostego układu referencyjnego oraz trzech regeneracyjnych układów referencyjnych (po jednym dla każdego wymiennika ciepła). Głównym kryterium oceny był stopień regeneracji w odniesieniu do podstawowego układu, bez podgrzewania regeneracyjnego oraz układu z zastosowaniem tego samego typu podgrzewacza regeneracyjnego, przy zasilaniu z możliwie najniższego upustu pary. W rozprawie, analizie poddano układy z trzema rodzajami wymienników ciepła:

- powierzchniowe wymienniki podciśnieniowe (układy CR P),
- zbiorniki mieszankowe (układy CR M),
- powierzchniowe wymienniki nadciśnieniowe (układy CR N).

Analizie poddano również układy wykorzystujące dwa podgrzewcze wody oraz układy z wielostopniowym sprężaniem (układy szeregowe i równoległe inżektorów parowych).

Na rysunku 6.1 przedstawiono zalgorytmizowany program przeprowadzonych badań numerycznych.

Rys. 6.1 Algorytm badań numerycznych układów z zastosowaniem inżektorów parowych

6.2. Układy referencyjne

Na potrzeby oceny poszczególnych rozwiązań zbudowano następujące modele układów referencyjnych:

- prostego układu referencyjnego CR I,
- układu referencyjnego z podciśnieniowym wymiennikiem ciepła CR P,
- układu referencyjnego ze zbiornikiem mieszankowym CR D,
- układu referencyjnego z nadciśnieniowym wymiennikiem ciepła CR N.

Dla celów porównawczych, dla każdego z rozpatrywanych rozwiązań zdefiniowano i określono:

- sprawność cieplną układu η_{CRx} , zgodnie z zależnością 1.2,
- stopień regeneracji układu, definiowany jako względny przyrost sprawności układu w wyniku zastosowanej modyfikacji E_x.

$$\mathcal{E}_x = \frac{\eta_{CRx} - \eta_{CRref\,I}}{\eta_{CRref\,I}} \tag{6.1}$$

Prosty układ referencyjny, którego schemat cieplno-przepływowy przedstawiony został na rysunku 6.2, składa się z: kotła parowego, bezupustowej turbiny kondensacyjnej, podciśnieniowego skraplacza pary wylotowej oraz pompy wody zasilającej.

Parametry stanu czynnika roboczego w poszczególnych płaszczyznach kontrolnych przedstawiono w tabeli 6.1.

Rys. 6.2 Schemat cieplno-przepływowy prostego układu referencyjnego

Płaszczyzna kontrolna	p _{abs.}	t	i	'n
Numer	[barA]	[°C]	[kJ/kg]	[kg/s]
1	59,5	520	3470	1
2	0,066	38	2300	1
3	0,05	32	2290	1
4	0,05	32	138	1
5	0,05	32	138	1
6	70	32	138	1

Tab. 6.1 Parametry termodynamiczne pary w płaszczyznach kontrolnych prostego układu referencyjnego

Sprawność cieplną prostego układu referencyjnego dla parametrów pary świeżej $p_1=59,5$ oraz $t_1=520$ °C wyznaczono z zależności, uzyskując wynik:

$$\eta_{CRIref} = \frac{(i_1 - i_3)}{(i_1 - i_5)} = 0,35114 \tag{6.2}$$

Ponad to wyznaczono wielkości sprawności oraz stopni regeneracji dla układów z regeneracyjnymi wymiennikami ciepła. Szczegółowe wyniki zamieszczone w załączniku nr 2 (Z2.1.), posłużyły do porównania oraz oceny zastosowania układów z regeneracyjnymi inżektorami parowymi dla poszczególnych typów wymienników ciepła.

6.3. Układ z zastosowaniem podciśnieniowych powierzchniowych wymienników ciepła

Podgrzanie wody kotłowej do temperatury nie przekraczającej 100 °C, nie wymaga ciśnienia pary grzewczej powyżej ciśnienia atmosferycznego. Dlatego też podjęto analizę układów z wykorzystaniem inżektorów parowych oraz podciśnieniowych wymienników ciepła.

6.3.1. Układy jednostopniowego podgrzewania wody zasilającej

Analizowany układ przedstawiony na rysunku 6.3, stanowi modyfikację regeneracyjnego układu referencyjnego z podciśnieniowym wymiennikiem ciepła. W badanym układzie podgrzewacz regeneracyjny zasilany jest parą odlotową z inżektora parowego, który zasilany jest parą z upustu turbiny. Skropliny pary grzewczej z podgrzewacza, bez przechłodzenia, kierowane są do skraplacza podciśnieniowego.

Obliczenia bilansu cieplnego układu przeprowadzono, analogicznie jak dla układów referencyjnych, dla różnych poziomów energetycznych pary zasilającej (zgodnie z tabelą 5.1), różnego poziomu podgrzania wody zasilającej {60°C, 70°C, 80°C} oraz dla założonych stopni eżekcji z przedziału $\sigma = 0,143 - 0,667$. Na podstawie wyników obliczeń wyznaczono krzywe zależności sprawności cieplnej układu, strumienia masy pary zasilającej inżektor i strumienia masy pary zasysanej przez inżektor parowy, w funkcji stopnia eżekcji inżektora.

Rys. 6.3 Schemat cieplno-przepływowy układu z jednostopniowym podgrzewaniem wody zasilającej z zastosowaniem podgrzewacza podciśnieniowego oraz inżektora parowego

Obliczenia przeprowadzono zgodnie z algorytmem przedstawionym w załączniku nr 2 (Z2.2.1.), w którym przedstawiono także wyniki obliczeń rozpatrywanych wariantów. Na rysunkach 6.4 i 6.5 przedstawiono wyznaczone wielkości sprawności oraz stopni regeneracji układu z wykorzystaniem inżektora parowego dla różnych poziomów energetycznych zaczepu pary oraz wyznaczone w rozdziale 6.2 wielkości dla układu referencyjnego zasilanego parą upustową 1,5 barA.

Jak wynika z analizy uzyskanych wyników, przy zachowaniu stałej temperatury podgrzania kondensatu możliwe jest uzyskanie różnych wartości sprawności cieplnej obiegu. Zależne jest to od sposobu realizacji procesu podgrzewania wody zasilającej (zastosowanego układu oraz jego parametrów). Ponadto, tą samą wartość sprawności układu przy zasilaniu z tego samego upustu pary można uzyskać przy obniżonej temperaturze wody zasilającej poprzez zwiększanie stopnia eżekcji. Przy zwiększaniu stopnia eżekcji w przedziale, w którym uzyskane ciśnienie pary opuszczającej inżektor, pozwala na uzyskanie stałej temperatury kondensatu, wzrost sprawności obiegu wynika z faktu zmniejszenia zapotrzebowania na parę upustową oraz zwiększanie ilości pary zasysanej przez inżektor (zwiększa się odzysk ciepła skraplania). Dalsze zwiększanie stopnia eżekcji powoduje obniżenie ciśnienia pary wylotowej inżektora. Przy obniżeniu ciśnienia poniżej wartości nasycenia dla założonej temperatury kondensatu stopień regeneracji układu zmniejsza się. Wartość maksymalnego stopnia regeneracji uzyskuje przy wartości ciśnienia bliskiej nasycenia pary odpowiadającej założonej temperaturze kondensatu.

Rys. 6.4 Obliczone wartości sprawności regeneracyjnego układu z podciśnieniowym wymiennikiem ciepła zasilanym parą z inżektora regeneracyjnego

Rys. 6.5 Obliczone stopnie regeneracji układu z powierzchniowym, podciśnieniowym wymiennikiem ciepła zasilanym parą z inżektora regeneracyjnego

Na rysunku 6.6 przedstawiono pasmowy wykres Sankeya dla układu z inżektorem zasilanym z upustu pary o ciśnieniu 3,0 barA oraz temperaturze podgrzania kondensatu 80°C,

osiągający najwyższy stopień regeneracji. Wykres ujawnia racjonalność odzysku energii z niskich poziomów energetycznych przy zastosowaniu regeneracyjnego inżektora parowego.

Rys. 6.6 Wykres pasmowy Sankey'a dla układu z inżektorem parowym zasilanym parą upustową 3,0 barA i podgrzewaczem podciśnieniowym

Uzyskane wartości stopnia regeneracji układów przewyższają odpowiadające im wielkości układów referencyjnych. Przy tym uzyskane stopnie regeneracji przy zastosowaniu inżektora parowego zasilanego upustem pary 3,0 barA dla temperatury podgrzewu wody 60 °C oraz 70 °C są wyższe niż układów referencyjnych zasilanych parą upustową z niższego upustu (1,5 barA). Różnica w wielkości stopnia regeneracji układu dąży do 0 wraz ze wzrostem temperatury kondensatu.

Na podstawie przeprowadzonej analizy wyników badań numerycznych stwierdzono zasadność stosowania inżektora dla temperatur podgrzania wody zasilającej do 80 °C. Dalsze zwiększanie temperatury wody zasilającej przy wykorzystaniu podciśnieniowych wymienników ciepła zmniejsza różnicę pomiędzy stopniami regeneracji układów na korzyść układów referencyjnych. Wynika to z konieczności stosowania wyższych ciśnień pary zasilającej wymiennik ciepła oraz zmniejszania stopnia eżekcji inżektora (zmniejszenia strumienia pary odlotowej z turbiny głównej zasysanej przez inżektor). Dużym źródłem strat dla układu wyposażonego w jeden wymiennik ciepła oraz odprowadzenie skroplin do skraplacza głównego jest ciepło wynikające z temperatury skroplin opuszczających wymiennik ciepła. Strata ta rośnie wraz ze wzrostem założonej temperatury kondensatu zasilającego kocioł. Zastosowanie układów wielostopniowych umożliwi dobranie parametrów pracy poszczególnych inżektorów oraz zwiększenie sumarycznego strumienia pary zasysanego przez inżektory. Dodatkowo układ taki umożliwi przechłodzenie skroplin

podgrzewaczy wyższych stopni w podgrzewaczach niższych stopni, co dodatkowo przełoży się na podwyższenie sprawności obiegu.

6.3.2. Dwustopniowe podgrzewanie wody zasilającej z wykorzystaniem inżektorów parowych

Zastosowanie układów z podciśnieniowym wymiennikiem ciepła wprowadzają do układu dodatkową stratę związaną z ciepłem odprowadzonym do skraplacza głównego wraz ze skroplinami pary grzewczej. W celu zmniejszenia tej straty można zastosować układy wielostopniowego podgrzewania wody, w których skropliny z wyższych stopni ulegałyby przechłodzeniu w wymiennikach niższych stopni. Układ taki pozwoli również na zoptymalizowanie procesu podgrzewania wody dzięki zastosowaniu osobnych inżektorów. Zabieg ten spowoduje zwiększenie sumarycznego strumienia zastanej pary odlotowej.

Analizie poddano dwa układy: układ równoległy *CR P 2s rów.* (Rys. 6.7) oraz układ szeregowy *CR P 2s szer.* (Rys. 6.8). Obliczenia przeprowadzono dla układu zasilanego parą upustową 3,0 barA, który uzyskał najwyższe wartości stopnia regeneracji dla układów jednostopniowych. Obliczenia wykonano zgodnie z algorytmem przedstawionym w załączniku nr 2 (Z2.2.2.), w którym przedstawiono także szczegółowe wyniki obliczeń bilansów energetycznych.

Rys. 6.7 Schemat cieplno-przepływowy dwustopniowego układu regeneracyjnego z inżektorami parowymi w układzie równoległym CR P 2s równoległy

Rys. 6.8 Schemat cieplno-przepływowy dwustopniowego układu regeneracyjnego wykorzystującego inżektory parowe – układ równoległy CR P 2s szeregowy

Przeanalizowano dwa warianty dla obydwu układów. W wariancie nr 1 w podgrzewaczu pierwszego stopnia kondensat podgrzewany jest do temperatury $t_7=60$ °C, dla wariantu nr 2 do temperatury nasycenia (odpowiadającej parze opuszczającej inżektor pierwszego stopnia) pomniejszonej o 5 K ($t_7 = 61, 8$ °C). Kondensat w wymienniku drugiego stopnia ulega podgrzaniu do temperatury $t_8 = 80$ °C. Skropliny pary grzewczej z podgrzewacza wyższego stopnia kierowane są w celu przechłodzenia do podgrzewacza niższego stopnia. Trzeci układ obliczono dla zoptymalizowanych parametrów inżektora 2-go stopnia wariantu 2, tak aby ciśnienie pary opuszczającej urządzenie było jak najbliższe ciśnieniu nasycenia w wymienniku przy możliwie wysokim stopniu eżekcji. Stopień eżekcji dobrano na podstawie równania, wyznaczonego w rozdziale 5 (Rys. 5.2), opisującego zależność $p_l = f(\sigma)$.

Jak wcześniej ustalono (w podrozdziale 6.3.1) na stopień regeneracji układu wpływ ma nie tylko stopień/temperatura regeneracyjnego podgrzania wody zasilającej, ale również sposób jego realizacji. Zastosowanie dodatkowego wymiennika ciepła umożliwiło optymalizację procesu podgrzania wody. Poprzez odpowiedni dobór temperatury podgrzania kondensatu oraz parametrów pracy regeneracyjnych inżektorów parowych, uzyskano dalszy wzrost stopnia regeneracji układu o 0,5%. Na podstawie otrzymanych wyników sporządzono wykres pasmowy Sankeya (Rys. 6.10 oraz 6.11), odzwierciedlający fizykę konwersji ciepła analizowanego układu.

Rys. 6.9 Wykres pasmowy Sankey'a układu dwustopniowego układu regeneracyjnego wykorzystującego inżektory parowe w układzie równoległym CR P 2s równoległy

Rys. 6.10 Wykres pasmowy Sankey'a dla dwustopniowego układu regeneracyjnego wykorzystującego inżektory parowe – układ szeregowy CR D 2sszeregowy

Na rysunkach 6.11 oraz 6.12 przedstawiono wielkości wyznaczonych sprawności oraz stopni eżekcji układów równoległych oraz szeregowych, skonfrontowanych z wartościami

układu referencyjnego oraz układu z inżektorem regeneracyjnym zasilanym parą upustową 3,0 barA.

Rys. 6.11 Obliczone wartości sprawności układów z dwoma powierzchniowymi, podciśnieniowymi wymiennikami ciepła, zasilanych parą odlotową z zespołu dwóch inżektorów parowych

Stosowanie układów wielostopniowego podgrzewania wody zasilającej wskazuje na możliwość zwiększenia stopnia regeneracji układu przy zachowaniu tej samej temperatury podgrzania wody oraz poziomu energetycznego pary upustowej. Zastosowanie układu równoległego pozwala na zoptymalizowanie pracy układu poprzez zwiększenie ilości utylizowanego ciepła pary odlotowej, tym samym zmniejszając zapotrzebowany strumień pary zasilającej inżektory.

Poprzez zastosowanie układu równoległego (dwustopniowe sprężanie pary) osiągnięto wartości nieznacznie niższe od układu szeregowego. Układ ten jednak umożliwia uzyskanie wyższych wartości ciśnień. Układy te powinny być rozważone dla podgrzewaczy wyższych stopni regeneracji, w zakresie temperatur powyżej 100 °C. Ponadto, analiza zastosowań

wielostopniowych inżektorów wykazała, iż zastosowanie chłodnicy między stopniami pozwoli na uzyskanie wyższych ciśnień. Rozważyć zatem należy układy w których przegrzana para opuszczająca inżektor pierwszego stopnia, powinna być ochłodzona do temperatury nasycenia przez wodę zasilającą kocioł.

W wyniku schłodzenia pary maleje wartość entropii mieszaniny w komorze mieszania, dzięki czemu możliwe jest uzyskanie wyższego ciśnienia pary opuszczającej inżektor. Rozwiązanie to szczególnie należy rozważyć dla wyższych ciśnień gdzie ze względu na wysoki stopień przegrzania pary za pierwszym stopniem, przełożyć może się to zarówno na wartość ciśnienia za drugim stopniem jak i zauważalny wzrost temperatury wody zasilającej kocioł.

Głębsza analiza możliwości zastosowania schładzania pary w procesie wielostopniowego sprężania pary, oraz możliwości użytecznego wykorzystania tego ciepła, wykraczają poza ramy przyjęte dla niniejszej pracy, tym samym wskazując dalsze kierunki badań.

6.4. Układ z zastosowaniem zbiornika mieszankowego

Osobną grupę rozważanych wymienników ciepła z zastosowaniem inżektorów parowych stanowią zbiorniki mieszankowo-odgazowujące. Niewątpliwą zaletą stosowania tego typu wymienników ciepła jest brak strat związanych z odprowadzaniem skroplin do skraplacza. Ponadto zastosowanie jednego takiego zbiornika w złożonym, wielostopniowym układzie podgrzewania wody zasilającej umożliwia wyeliminowanie tych strat dla wszystkich zastosowanych powierzchniowych podgrzewaczy wody.

Na rysunku 6.13 przedstawiono schemat cieplno-przepływowy układu realizującego regeneracyjny obieg Clausiusa-Rankinea z zastosowaniem zbiornika mieszankowego zasilanego parą odlotową z regeneracyjnego inżektora parowego.

Rys. 6.13 Schemat cieplno-przepływowy układu z jednostopniowym podgrzewaniem wody zasilającej z wykorzystaniem mieszankowego wymiennika ciepła zasilanego regeneracyjnym inżektorem parowym

Obliczenia bilansu cieplnego układu przeprowadzono jak dla układów referencyjnych, dla różnych poziomów energetycznych pary zasilającej (zgodnie z tabelą 5.1), różnego poziomu podgrzania wody zasilającej {70°C, 80°C, 90°C, 100°C, 105°C, 110°C} oraz dla założonych stopni eżekcji z przedziału $\sigma = 0,143 - 0,667$. Algorytm obliczeń oraz wyniki przedstawiono w załączniku nr 2 (Z2.3.).

Na rysunkach 6.14 oraz 6.15 zestawiono odpowiednio najwyższe wartości sprawności cieplnej układu oraz stopnia regeneracji względem prostego układu referencyjnego. Wyniki zestawiono dla porównania z wynikami układu referencyjnego, w którym zbiornik mieszankowy zasilany jest parą upustową o ciśnieniu absolutnym 3 barA.

Rys. 6.14 Obliczone wartości sprawności regeneracyjnego układu z mieszankowym wymiennikiem ciepła zasilanym parą z inżektora regeneracyjnego

Rys. 6.15 Obliczone stopnie regeneracji układu z mieszankowym wymiennikiem ciepła zasilanym parą z inżektora regeneracyjnego

Na rysunku 6.16 przedstawiono pasmowy wykres Sankeya, który graficznie odzwierciedla idee zastosowania inżektora parowego z mieszankowym wymiennikiem ciepła.

Badania numeryczne wykazały, iż zastosowanie inżektora w połączeniu z mieszankowym zbiornikiem jest zasadne dla zakresu temperatur do 100°C. Dla układów złożonych z podciśnieniowymi wymiennikami ciepła rozważyć należy równoległe układy sprężania, które umożliwią zastosowanie wyższych ciśnień pary grzewczej, a w konsekwencji wyższą

temperaturę podgrzewu wody. Dla układów złożonych zasadnym byłoby zastosowanie przynajmniej jednego mieszankowego wymiennika ciepła.

Rys. 6.16 Pasmowy wykres Sankey'a układu z inżektorem parowym zasilanym parą upustową 3,0 barA i mieszankowym wymiennikiem ciepła

6.5. Układ z zastosowaniem nadciśnieniowych powierzchniowych wymienników ciepła

W celu uzyskania wyższej temperatury wody zasilającej (w przedziale 100-150 °C), konieczne jest zastosowanie wymienników ciepła zasilanych parą o ciśnieniu powyżej ciśnienia atmosferycznego.

Jak wskazano przy obliczeniach referencyjnych układów nadciśnieniowych, pojedynczy układ z jednym wymiennikiem ciepła, w którym para grzewcza skrapla się przy ciśnieniu nasycenia dla założonej temperatury podgrzania wody zasilającej kocioł, obarczony będzie dużą stratą związaną z temperaturą skroplin opuszczających podgrzewacz a kierowanych do skraplacza głównego. Stratę tą można jednak znacząco ograniczyć poprzez zastosowanie chłodnicy skroplin, bądź zniwelować do zera stosując w układzie mieszankowy wymiennik ciepła, do którego kierowane będą skropliny z podgrzewacza nadciśnieniowego.

Schemat cieplno-przepływowy regeneracyjnego układu dla nadciśnieniowych wymienników ciepła zasilanych parą odlotową z regeneracyjnego inżektora parowego przedstawiono na rysunku 6.17.

Rys. 6.17 Schemat cieplno-przepływowy układu z jednostopniowym podgrzewaniem wody zasilającej z wykorzystaniem nadciśnieniowego wymiennika ciepła zasilanego regeneracyjnym inżektorem parowym oraz pompą skroplin

Obliczenia bilansu cieplnego układu zostały przeprowadzone, tak jak dla układów referencyjnych, dla różnych poziomów energetycznych pary zasilającej (zgodnie z tabelą 5.1). Algorytm oraz wyniki obliczeń przedstawiono w załączniku nr 2 (Z2.4.).

W tabeli 6.2 przedstawiono możliwe do uzyskania parametry pary w zależności od ciśnienia zasilania oraz stopnia eżekcji. Kolorem szarym zaznaczono warianty możliwe do

wykorzystania dla układów z jednostopniowym sprężaniem pary z nadciśnieniowymi wymiennikami ciepła.

Upust pary wysokiego ciśnienia 19,5 bar											
б	[-]	Założony stopień eżekcji	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
iL	[kJ/kg]	Entalpia mieszaniny pary za dyfuzorem	2830,7	2889,9	2919,2	2943,2	2963,8	3008,2	3037,8	3058,9	3074,8
tı	[°C]	Temperatura mieszaniny pary za dyfuzorem	175,5	206,2	221,3	233,7	244,3	267,1	282,2	293,0	301,1
p 1	[BarA]	Ciśnienie pary za dyfuzorem	0,359	0,504	0,603	0,71	0,809	1,106	1,38	1,625	1,84
	Para o ciśnieniu 10 bar – wyznaczona na podstawie krzywej rozprężania										
б	[-]	Założony stopień eżekcji	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
iL	[kJ/kg]	Entalpia mieszaniny pary za dyfuzorem	2733,2	2781,5	2805,5	2825,1	2842,0	2878,2	2902,4	2919,6	2932,6
t _l	[°C]	Temperatura mieszaniny pary za dyfuzorem	124,967	150,38	162,95	173,24	182,059	201,034	213	222,71	229,5
\mathbf{p}_1	[BarA]	Ciśnienie pary za dyfuzorem	0,307	0,418	0,493	0,566	0,641	0,847	1,03	1,185	1,325
			Upust	pary pośr	edniego ciś	nienia 6,6	bar				
б	[-]	Założony stopień eżekcji	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
iL	[kJ/kg]	Entalpia mieszaniny pary za dyfuzorem	2684,0	2726,9	2748,1	2765,5	2780,5	2812,6	2834,0	2849,3	2860,8
t _l	[°C]	Temperatura mieszaniny pary za dyfuzorem	99,3	122,0	133,2	142,4	150,3	162,3	178,6	186,7	192,7
p 1	[BarA]	Ciśnienie pary za dyfuzorem	0,274	0,366	0,426	0,485	0,544	0,703	0,84	0,959	1,061
Para o ciśnieniu 3 bar – wyznaczona na podstawie krzywej rozprężania											
б	[-]	Założony stopień eżekcji	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
iL	[kJ/kg]	Entalpia mieszaniny pary za dyfuzorem	xxx	2633,5	2650,1	2663,8	2675,5	2700,6	2717,4	2729,3	2738,3
t _l	[°C]	Temperatura mieszaniny pary za dyfuzorem	xxx	73,361	82,2	89,4	95,6	109,1	118,0	124,4	129,3
\mathbf{p}_1	[BarA]	Ciśnienie pary za dyfuzorem	xxx	0,271	0,308	0,345	0,38	0,471	0,547	0,611	0,664

Tab. 6.2 Wyznaczone parametry pary opuszczającej regeneracyjny inżektor parowy w zależności od ciśnienia pary zasilającej oraz założonego stopnia eżekcji

Ze względu na wymóg odpowiednio wysokiego ciśnienia pary grzewczej obliczenia przeprowadzono jedynie dla układów zasilanych parą zaczepową 6,6 BarA, $\sigma = 0,143$; 10 barA $\sigma = 0,143 - 0,200$; oraz 19,5 barA $\sigma = 0,143 - 0,250$.

Zastosowanie jednostopniowego sprężania, jest znacznie ograniczone dla układów podgrzewania wody. Ze względu na uzyskane ciśnienia maksymalne podgrzanie wody przy zastosowaniu parametrów pary z tabeli 5.1 wynosi 112 °C. Z tergo też powodu jednostopniowe układy nie mogą być zastosowane dla wyższych stopni podgrzewania wody w zakresie do 150 °C. W tym celu rozważono układy z zastosowaniem dwustopniowego sprężania.

Na rysunkach 6.18 oraz 6.19 przedstawiono odpowiednio, obliczone wielkości sprawności oraz stopnia regeneracji układów. Przeprowadzone badania numeryczne układów wskazały także, iż stosowanie wyższych poziomów energetycznych pary upustowej do zasilania inżektorów parowych (w celu uzyskania wyższych ciśnień pary odlotowej), jest nieuzasadnione z ekonomicznego punktu widzenia. Stosowanie wyższych parametrów pary powoduje zmniejszenie dostępnego spadku entalpii dla turbiny. Spadek ten nie jest jednak

kompensowany poprzez zmniejszenie ilości ciepła wymaganego do doprowadzenia do układu w kotle. W wyniku tego uzyskane stopnie regeneracji układu są niższe od wielkości uzyskiwanych przy niższych temperaturach podgrzania kondensatu, stosując parę zasilającą inżektory z niższych poziomów energetycznych, oraz niższe od wielkości układów referencyjnych, bez zastosowania inżektorów parowych.

Rys. 6.18 Wyznaczone wartości sprawności regeneracyjnego układu z nadciśnieniowym wymiennikiem ciepła zasilanym parą z inżektora regeneracyjnego

Rys. 6.19 Obliczone stopnie regeneracji układu z nadciśnieniowym wymiennikiem ciepła zasilanym parą z inżektora regeneracyjnego

6.6. Układy dwustopniowego sprężania pary

Zastosowanie nadciśnieniowych, powierzchniowych wymienników ciepła wyższych stopni (dla temperatury podgrzania wody zasilającej powyżej 100 °C), wymaga stosowania wyższych ciśnień pary zasilającej wymiennik (pary grzewczej). W celu uzyskania wyższych ciśnień pary na odlocie z regeneracyjnych inżektorów parowych, konieczne jest zastosowanie pary upustowej z wyższych poziomów energetycznych. W wyniku zastosowania wyższych upustów pary zmniejszeniu ulega dostępny spadek entalpii w turbinie, co niekorzystnie przekłada się na poziom regeneracji układu. W celu uzyskania wyższych ciśnień pary zasilającej podgrzewacze, w niniejszym rozdziale rozważono zastosowanie dwustopniowego, szeregowego zespołu inżektorów. W rozwiązaniu tym inżektor pierwszego stopnia zasysa parę odlotową z turbiny, natomiast inżektor drugiego stopnia zasysa parę odlotową pierwszego stopnia. W rozdziale rozważono możliwość zasilania parą pojedynczego wymiennika ciepła jak również zastosowanie dwóch osobnych wymienników w celu optymalizacji pracy układu.

Wstępne rozpoznanie możliwości zastosowania sprężania dwustopniowego przedstawiono w rozdziale 6.3.2. W analizie tej porównano dwa układy z podciśnieniowymi wymiennikami ciepła, układ równoległy, w którym obydwa inżektory zasysają parę odlotową z zespołu turbinowego, oraz układ równoległy, w który inżektor wyższego stopnia zasysa parę odlotową z inżektora niższego stopnia. W wyniku zastosowania układu równoległego uzyskano wyższy stopień regeneracji układu.

6.6.1. Zastosowanie dwustopniowego sprężania pary w układzie jednostopniowego podgrzewania wody zasilającej

Na rysunku 6.20 przedstawiono schemat cieplno-przepływowy obiegu parowego z zastosowaniem dwustopniowego sprężania pary w zespole inżektorowym zasilanego z jednego (6.20 a) 6,6-6,6 barA oraz z dwóch różnych (6.20 b) zaczepów pary 3,0-6,6; 3,0-10; 6,6-10 barA. Zespół inżektorowy dostarcza parę grzewczą do jednego podgrzewacza regeneracyjnego o parametrach stanu wyznaczonych w rozdziale 5.2 (załącznik nr 1 Z1.1.).

Rys. 6.20 Schemat cieplno-przepływowy układu z jednostopniowym podgrzewaniem wody zasilającej z wykorzystaniem dwustopniowego zespołu inżektorowego zasilanego a) z jednego zaczepu pary, b) z osobnych zaczepów pary

W wyniku przeprowadzonych obliczeń bilansów cieplnych wyznaczono entalpowe sprawności zaproponowanych układów oraz stopnie regeneracji układu. Zbiorcze wyniki wraz z algorytmem obliczeń bilansów cieplnych dla poszczególnych układów oraz zakresów temperatur podgrzania wody zasilającej kocioł {100, 110, 120, 130, 140, 150°C} przedstawiono w załączniku nr 2 (Z2.4.1.). Na rysunku 6.21 oraz 6.22 skonfrontowano maksymalne wartości sprawności oraz stopnia regeneracji układów dla poszczególnych wariantów z uzyskanymi wielkościami układów referencyjnych.

Zastosowanie układu zasilanego parą zaczepową, odpowiednio 3,0 oraz 6,6 barA umożliwia maksymalne podgrzanie wody kotłowej do 121,2°C przy zastosowaniu stopni eżekcji $\sigma_{s1}, \sigma_{s2} = 0,143$, uzyskując stopień regeneracji $\mathcal{E}_{CR2s} = 4,675$. Dla układu referencyjnego zasilanego upustem pary 6,6 barA dla temperatury podgrzania wody $t_9 = 121,2$ °C, stopień regeneracji wyniósł \mathcal{E}_{CRre} , $_{6 \ barA} = 4,314$. A więc o $\mathcal{A}_{\mathcal{E}} = 0,361$ punktu procentowego mniej. Różnica ta maleje wraz ze wzrostem temperatury podgrzania wody kotłowej, oraz stosowania wyższych poziomów energetycznych pary upustowej zasilającej inżektory.

Zastosowanie układu wykorzystującego parę zaczepową 6,6 barA dla obu inżektorów, umożliwia uzyskanie maksymalnej temperatury $t_9 = 127,3$ °C, co przekłada się na stopień regeneracji $\mathcal{E}_{CR2s} = 4,858$, tym samym dla stałej t_9 , przyrost stopnia regeneracji układu wynosi $\Delta_{\mathcal{E}} = 0,102$ punktu procentowego, względem układu referencyjnego. Zastosowanie upustów 3,0 oraz 10 barA powoduje najmniejszy przyrost stopnia regeneracji, który dla temperatur $t_9 \ge 120$ °C staje się ujemny.

Zastosowanie upustu 6,6 oraz 10 barA, ze względu na wysoki poziom energetyczny skutkuje ujemnym stopniem regeneracji $\Delta_{\mathcal{E}} < 0$.

Rys. 6.21 Obliczone wartości sprawności układu regeneracyjnego z dwustopniowym zespołem inżektorowym

Rys. 6.22 Obliczone stopnie regeneracji układu z dwustopniowym zespołem inżektorowym

Podnoszenie temperatury wody zasilającej wymusza stosowanie niższych stopni eżekcji, co przekłada się na niższy stopień wykorzystania pary odlotowej z turbiny głównej w procesie podgrzewania regeneracyjnego. Natomiast zastosowanie pary upustowej z wyższych poziomów energetycznych powoduje obniżenie dostępnego spadku entalpii w turbinie.

6.6.2. Zastosowanie dwustopniowego sprężania pary w układzie dwustopniowego podgrzewania wody zasilającej

Jak wynika ze wstępnej analizy przeprowadzonej w rozdziale 6.3.2. zastosowanie dodatkowego wymiennika ciepła zasilanego parą odlotową z inżektora pierwszego stopnia dodatnio wpływa na stopień regeneracji. Układy (rysunek 6.20 a i b) rozbudowano o kolejny wymiennik ciepła (rysunek 6.23 a i b), w którym woda zasilająca podgrzewana jest do temperatury nasycenia mieszaniny pary opuszczającej inżektor pierwszego stopnia obniżonej o 5 K. Zbiorcze wyniki przeprowadzonych obliczeń przedstawiono w załączniku nr 2 (Z2.4.2.). Na rysunku 6.24 oraz 6.25 przedstawiono maksymalne wartości sprawności oraz stopnia regeneracji poszczególnych wariantów dla różnych wartości wody zasilającej. Wyniki porównano z wartościami układów referencyjnych oraz układów z jednym wymiennikiem ciepła. Wyznaczone wielkości zmiany stopnia regeneracji przedstawiono na rysunku 6.26.

Rys. 6.23 Schemat cieplno-przepływowy układu z dwustopniowym podgrzewaniem wody zasilającej z wykorzystaniem dwustopniowego zespołu inżektorowego zasilanego a) z jednego zaczepu pary, b) z osobnych zaczepów pary

Rys. 6.24 Wyznaczone wartości sprawności układu regeneracyjnego z dwustopniowym zespołem inżektorowym przy zastosowaniu jednego oraz dwóch wymienników ciepła

Rys. 6.25 Wyznaczone stopnia regeneracji układu z dwustopniowym zespołem inżektorowym przy zastosowaniu jednego oraz dwóch wymienników ciepła

Rys. 6.26 Wyznaczone wartości przyrostu stopnia regeneracji układu w wyniku zastosowania dwustopniowego zespołu inżektorowego z jednym oraz dwoma wymiennikami ciepła

Wyniki obliczeń wskazują na zasadność stosowania kolejnego wymiennika ciepła zasilanego parą odlotową z pierwszego stopnia. Przy zasilaniu układu parą upustową 3,0 oraz

6,6 barA i stosując dodatkowy wymiennik ciepła możliwe jest przy temperaturze $t_9 = 121,2$ °C uzyskanie przyrostu stopnia regeneracji $\Delta_{\mathcal{E}} = 1,272$. Różnica ta, podobnie jak dla układów z jednym wymiennikiem maleje wraz ze wzrostem temperatury wody zasilającej kocioł oraz zwiększaniem poziomów energetycznych zastosowanych upustów pary.

Podsumowując, zastosowanie sprężania dwustopniowego w układzie z jednym wymiennikiem ciepła daje zysk energetyczny względem układów referencyjnych jedynie w wąskim zakresie temperatur podgrzania wody kotłowej ($t_9 \leq 130^{\circ}C$). Wynika to z konieczności stosowania dodatkowego strumienia pary upustowej, obniżając dostępny spadek entalpii w turbinie. Równoległy układ zespołu inżektorowego skutkuje także obniżeniem stosunku pary odlotowej do pary upustowej z turbiny w mieszaninie pary opuszczającej zespół inżektorowy, względem układu szeregowego. Dwustopniowe zespoły inżektorowe wykorzystać jednak można w złożonych układach, w których para pierwszego stopnia zasilać będzie jeden z wymienników, jak również częściowo będzie zasysana przez inżektor wyższego stopnia. Zastosowanie takiego układu umożliwi uzyskanie wyższych temperatur wody zasilającej, jednocześnie uzyskując maksymalne wykorzystanie ciepła skraplania pary odlotowej z turbiny głównej, celem podgrzania wody kotłowej.

6.7. Podsumowanie

Na podstawie analizy wyników wielowariantowych obliczeń przeprowadzonych dla układów zastosowaniem zarówno podciśnieniowych, nadciśnieniowych Z oraz mieszankowych wymienników ciepła wyznaczono zakresy użytecznego wykorzystania inżektorów parowych w układach regeneracyjnego podgrzewania wody. Podciśnieniowe wymienniki ciepła należy stosować w zakresie od temperatury skraplania (skraplacza głównego) do temperatury 80°C, którą to uznać można za wartość graniczną. Najwyższy przyrost sprawności uzyskano dla temperatury podgrzania wody zasilającej 60 °C. Analiza wykazała także zasadność stosowania wielostopniowego podgrzewania wody zasilającej. Zastosowanie kolejnych wymienników będzie zwiększać stopień wykorzystania ciepła skraplania, traconego w skraplaczu, poprzez odpowiedni dobór parametrów pracy inżektora. Umożliwia to odpowiedni dobór ciśnienia pary upustowej zasilającej inżektor oraz stopień eżekcji, dzięki czemu możliwe jest dostosowanie ciśnienia pary grzewczej w wymienniku bliskiej ciśnieniu nasycenia. Wykazano także, iż dla wymienników podciśnieniowych, ze względu na niższe ciśnienia zapotrzebowanej pary grzewczej powinno się stosować raczej układy szeregowe niż równoległe, zespołów inżektorowych.

W toku badań wskazano na konieczność zastosowania zbiornika mieszankowego w układzie regeneracyjnego podgrzewania wody z powodów zarówno praktycznych jak i ekonomicznych. Zastosowanie zbiornika mieszankowego poza funkcją odgazowującą oraz zapewnienia odpowiedniego słupa wody na ssaniu pompy zasilającej kocioł, ułatwia głębszą utylizację ciepła w układzie poprzez kierowanie do niego skroplin pary grzewczej z podgrzewaczy powierzchniowych. W toku badań wyznaczono zakres temperatur użytecznego wykorzystania zbiornika mieszankowego do 80-110 °C.

Ze względu na możliwe do uzyskania ciśnienia pary grzewczej zastosowanie inżektorów parowych dla wymienników nadciśnieniowych jest znacznie ograniczone. Przy zastosowaniu

układów jednostopniowego sprężania, wykorzystując dostępne zaczepy pary możliwe jest uzyskanie temperatury podgrzania wody kotłowej do 112 °C. Dlatego też podjęto analizę zastosowania sprężania dwustopniowego. Umożliwiło to zastosowanie wyższych temperatur podgrzania. Przy zastosowaniu zaczepu pary maksymalna możliwa temperatura podgrzania wody zasilającej kocioł dla zbiornika nadciśnieniowego wynosi 125 °C. Przy zastosowaniu zespołu inżektorowego zasilanego parą 3,0 oraz 10 barA zasadne jest podgrzewanie wody zasilającej kocioł do temperatury 130 °C. Dalsze podgrzewanie wody musi odbywać się w wymienniku zasilanym bezpośrednio parą zaczepową.

W oparciu o przeprowadzoną analizę wypracowano ogólne zalecenia projektowe dla regeneracyjnych układów parowych:

- 1. Sprawność układów parowych w dużej mierze zależy od stopnia podgrzania wody zasilającej kocioł parowy. Im wyższa temperatura uzyskana w wyniku regeneracyjnego podgrzania wody, tym wyższa sprawność układu. Ważnym zagadnieniem wpływającym na stopień regeneracji układu jest sposób regeneracyjnego podgrzewania wody kotłowej.
- 2. Podgrzew regeneracyjny, w celu uzyskania możliwie najwyższej sprawności, powinien być realizowany przez parę upustową z możliwie niskiego poziomu energetycznego.
- 3. Ciśnienie pary zasilającej podgrzewacze regeneracyjne powinno być możliwie bliskie ciśnienia nasycenia pary dla założonej temperatury podgrzania wody, w danym typie podgrzewacza.
- 4. Dla układów wykorzystujących inżektory parowe celowym jest stosowanie możliwie wysokiego stopnia eżekcji, w celu zwiększenia ilości odzyskanego ciepła skraplania w turbinie.
- 5. Dzięki stosowaniu układów wielostopniowych możliwe jest większe zracjonalizowanie pracy podgrzewaczy oraz głębsza utylizacja ciepła skraplania pary wylotowej z turbiny napędu głównego. Zwiększanie ilości podgrzewaczy będzie dodatnio wpływało na stopień regeneracji, jednak wraz ze wzrostem liczby podgrzewaczy sprawność będzie asymptotycznie dążyć do pewnej wielkości granicznej.

W wyniku przeprowadzonej analizy wskazano także na dalsze kierunki badań układów wykorzystujących regeneracyjne inżektory parowe. Ze względu na znaczny stopień przegrzania pary opuszczającej inżektor, można wykorzystać ciepło przegrzania tej pary w celu dalszego podgrzania wody za wymiennikiem. Następnie przechłodzona para może być kierowana do właściwego wymiennika ciepła. Równocześnie wskazano, iż zasadne może okazać się zastosowanie przechłodzenia pary do temperatury nasycenia strumienia kierowanego do drugiego stopnia sprężania. Dzięki takiemu zabiegowi poza dodatkowym dogrzaniem wody zasilającej możliwe będzie uzyskanie wyższego ciśnienia sprężania.

7. PROPONOWANE ROZWIĄZANIA ZŁOŻONEGO TURBINOWEGO UKŁADU PAROWEGO Z ZASTOSOWANIEM INŻEKTORÓW PAROWYCH ODZYSKUJĄCYCH CIEPŁO SKRAPLANIA PARY WYLOTOWEJ

W celu przeanalizowania zastosowania poszczególnych rozwiązań, omówionych w rozdziale 6, w złożonym układzie regeneracyjnego podgrzewania wody wykonano modele matematyczne oraz obliczono bilanse energetyczne następujących układów:

- a) Układu referencyjnego z trzema wymiennikami ciepła.
- b) Układ regeneracyjny z trzema wymiennikami ciepłą oraz jednym inżektorem parowym CR3/1.
- c) Układ regeneracyjny z trzema wymiennikami ciepłą oraz dwoma niezależnymi inżektorami parowymiCR3/2.
- d) Układy regeneracyjne z czterema wymiennikami ciepła oraz trzema inżektorami parowymi CR4/3:
 - Układ z trzema niezależnymi inżektorami parowymi CR4/3.
 - Układ z jednym zespołem inżektorowym oraz niezależnym inżektorem pierwszego stopnia CR4/3 2s1.
 - Układ z jednym zespołem inżektorowym oraz niezależnym inżektorem drugiego stopnia CR4/3 2s2.
- e) Złożone układy regeneracyjne z pięcioma wymiennikami ciepła oraz czterema inżektorami parowymi CR5/4:
 - Złożone układy z dodatkowym wymiennikiem w części niskociśnieniowej CR5/4 N
 - Złożone układy z dodatkowym wymiennikiem w części wysokociśnieniowej CR5/4W

W celu oceny efektywności zastosowanych modyfikacji układu stworzono model układu referencyjnego, w oparciu o dostępne eksploatacyjnie parametry rzeczywistego turbinowego układu napędowego zbiornikowca LNG.

W charakterze kryteriów oceny efektywności zastosowano następujące funkcje:

- sprawność entalpową obiegu wyznaczoną zgodnie ze wzorem (1.2).
- stopień regeneracji układu wyznaczony ze wzoru 4.2 oraz jego przyrost absolutny:

$$\Delta e_{CR} = e_{CRmodi} - e_{CRref} \tag{7.1}$$

przyrost pracy wewnętrznej turbiny napędu głównego:

$$\Delta l_i = l_{i \ modi} - l_{iref} \tag{7.2}$$

- zmianę wartości zapotrzebowania ciepła pary upustowej $\Delta(\dot{q}_2 + \dot{q}_3)$
- strumień ciepła odzyskanego pary odlotowej \dot{q}_0

Do obliczeń bilansów cieplnych układów regeneracyjnych z inżektorami parowymi posłużono się wartościami ich parametrów pracy wyznaczonymi w rozdziale 5.

7.1. Układ referencyjny złożonego obiegu parowego

Na rysunku 7.1 przedstawiono schemat cieplno-przepływowy układu referencyjnego, zamodelowanego z wykorzystaniem parametrów pracy turbinowego układu napędowego zbiornikowca LNG. Instalacja regeneracyjnego podgrzewania wody zasilającej składa się z trzech wymienników ciepła (Podgrzewacza niskiego ciśnienia, deaeratora, oraz podgrzewacza wysokiego ciśnienia) zasilanych z dwóch zaczepów pary z turbiny napędu głównego

o ciśnieniu 3,0 oraz 6,6 barA. Parametry stanu czynnika roboczego w poszczególnych płaszczyznach kontrolnych przedstawiono w tabeli 7.1.

Rys. 7.1 Schemat cieplno-przepływowy uproszczonego modelu turbinowego układu napędowego (układ referencyjny)

Płaszczyzna	P abs	t	i	ṁ
kontrolna	[barA]	[°C]	[kJ/kg]	[kg/s]
1	59 <i>,</i> 5	520	3470	1,0000
2	6,6	245	2943	0,0972
3	3	170	2803	0 <i>,</i> 0686
4	0,066	38	2300	0,8342
5	0,05	32	2290	0,8342
6	0,05	32	138	0,8342
7	10	32	138	0,8342
8	10	80	335,8	0,8342
9	1,99	120	503,8	1,0000
10	70	120	503,8	1,0000
11	70	140	593 <i>,</i> 5	1,0000
12	1	85	398,1	0 <i>,</i> 0686
13	10	85	398,1	0,0686
14	10	85	398,1	0 <i>,</i> 0686
15	6,6	245	2943	0,0587
16	6,6	245	2943	0,0385
17	4,16	145	610,6	0,0385

Tab. 7.1 Parametry termodynamiczne czynnika roboczego w płaszczyznach kontrolnych uproszczonego modelu turbinowego układu napędowego

Model matematyczny układu referencyjnego opisano za pomocą układu równań bilansowych 7.3 – 7.6:

$$\dot{m}_{16}(\dot{i}_{16} - \dot{i}_{17}) - \dot{m}_{11}(\dot{i}_{11} - \dot{i}_{10}) = 0$$
(7.3)

$$\dot{m}_{16}\dot{i}_{17} + \dot{m}_{15}\dot{i}_{15} + \dot{m}_3\dot{i}_{14} + \dot{m}_8\dot{i}_8 = \dot{m}_9\dot{i}_9 \tag{7.4}$$

$$\dot{m}_{16} + \dot{m}_{15} + \dot{m}_3 + \dot{m}_8 = \dot{m}_9 \tag{7.5}$$

$$\dot{m}_3(i_3 - i_{14}) - \dot{m}_8(i_8 - i_7) = 0 \tag{7.6}$$

Wówczas sprawność entalpową układu można zapisać w postaci:

$$\eta_{CRref} = \frac{\dot{m}_1(i_1 - i_4) - \dot{m}_2(i_2 - i_4) - \dot{m}_3(i_3 - i_4)}{\dot{m}_1(i_1 - i_{11})} = 0,37302$$
(7.7)

7.2. Układ regeneracyjny z zastosowaniem jednego inżektora parowego (zasilającego podgrzewacz niskiego ciśnienia) – układ CR 3/1

Zgodnie z przyjętym programem numerycznych badań symulacyjnych zastosowania inżektorów dla regeneracyjnego układu podgrzewania wody kotłowej, rozważono możliwość zastosowania inżektora parowego dla pierwszego stopnia podgrzewania wody zasilającej w zakresie od 38 °C (temperatur nasycenia mieszaniny paro-wodnej w skraplaczu), do 80 °C

(temperatura podgrzania wody zasilającej w wymienniku pierwszego stopnia). Modyfikacja układu polega na wstawieniu zaproponowanego inżektora parowego pomiędzy turbiną napędu głównego oraz wymiennikiem niskiego ciśnienia. Ze względu na stopień podgrzania wody (temperaturę), oraz odpowiadające temu ciśnienie nasycenia, w układzie tym zaproponowano zastosowanie podciśnieniowego wymiennika ciepła. Schemat cieplno-przepływowy zaproponowanego rozwiązania przedstawiono na rysunku 7.2.

Rys. 7.2 Schemat cieplno-przepływowy modelu turbinowego układu napędowego z zastosowaniem jednego inżektora parowego CR3/1

Model matematyczny układu przedstawionego na rysunku 7.2 opisano układem równań bilansowych:

$$\dot{m}_{19}(i_{18} - i_{19}) - \dot{m}_{12}(i_{12} - i_{11}) = 0$$
(7.8)

$$\dot{m}_{19}\dot{i}_{19} + \dot{m}_{17}\dot{i}_{17} + \dot{m}_{13}\dot{i}_{15} + \dot{m}_{9}\dot{i}_{9} = \dot{m}_{10}\dot{i}_{10} \tag{7.9}$$

$$\dot{m}_{19} + \dot{m}_{17} + \dot{m}_{13} + \dot{m}_9 = \dot{m}_{10} \tag{7.10}$$

$$\dot{m}_{13}(i_{13} - i_{15}) - \dot{m}_9(i_9 - i_8) = 0$$
(7.11)

Do wyznaczenia strumieni masy pary zasilającej inżektor (pary zaczepowej) oraz pary zasysanej (pary odlotowej), posłużono się przekształconą definicją na stopień eżekcji (4.1) otrzymując zależności:

$$\dot{m}_{Ci} = \frac{\dot{m}_{Li}}{1+6_i} \tag{7.12}$$

$$\dot{m}_{Xi} = \frac{\dot{m}_{Li}}{1 + \frac{1}{6_i}}$$
(7.13)

gdzie: "i" oznacza numer inżektora.

W tabeli 7.2 przedstawiono parametry termodynamiczne czynnika w poszczególnych płaszczyznach kontrolnych obiegu(1,2,3...n) oraz inżektorów parowych $(C_i,X_i,L_i, gdzie i oznacza numer inżektora).$

Płaszczyzna	P abs	t	i	ṁ
kontrolna	[barA]	[°C]	[kJ/kg]	[kg/s]
1	59 <i>,</i> 5	520	3470	1,0000
2	6,6	245	2943	0,0981
3=c1	3	170	2803	0,0596
4	0,066	38	2300	0,8422
5	0,066	38	2300	0,8323
6	0,05	32	2290	0,8323
7	0,05	32	138	0,8323
8	10	32	138	0,8323
9	10	80	335,8	0,8323
10	1,99	120	503,8	1,0000
11	70	120	503 <i>,</i> 8	1,0000
12	70	140	593,5	1,0000
13=L1	0,611	124,5	2729,3	0,0695
14	0,611	86,4	361,9	0,0695
15	10	86,4	361,9	0,0695
16=x1	0,066	38	2300	0,0099
17	6,6	245	2943	0,0597
18	6,6	245	2943	0,0385
19	4,16	145	610,6	0,0385
Obliczenia w	ykonane dl			
	eżekcji	б1	0,1667	

Tab. 7.2 Parametry termodynamiczne czynnika roboczego w płaszczyznach kontrolnych turbinowego układu napędowego z zastosowaniem jednego inżektora parowego

Obliczona sprawność układu wynosi:

$$\eta_{CR3/1} = \frac{\dot{m}_1(i_1 - i_4) - \dot{m}_2(i_2 - i_4) - \dot{m}_3(i_3 - i_4)}{(i_1 - i_{12})} = 0,37438$$
(7.14)

natomiast w wyniku zastosowanej modyfikacji stopień regeneracji układu odpowiada:

$$\mathcal{E}_{CRreg1} = \frac{\eta_{CR3/1} - \eta_{CRref}}{\eta_{CRref}} 100 = 0,3656\%$$
(7.15)

Modyfikacja układu poprzez wstawienie jednego inżektora parowego, zasilającego podciśnieniowy wymiennik ciepła, spowodowała poprawę sprawności układu o 0,13 punktu procentowego. Przekłada się to na stopień regeneracji układu 0,366%. Poprawa sprawności pomimo utrzymania tej samej temperatury podgrzania wody zasilającej kocioł (wymagany strumień ciepła doprowadzonego do układu nie uległ zmianie \dot{q}_d =const.), wynika z faktu zmniejszenia strumieni ciepła pochodzących z upustów pary. Strumień masy pary zaczepowej z upustu 6,6 barA wzrósł, co prawda o 0,001, co przełożyło się na wzrost strumienia ciepła o \dot{q}_2 = 2,65 kJ na jeden kilogram pary świeżej. Wynika to z faktu zmniejszenia strumienia ciepła doprowadzonej do deaeratora wraz z tym strumieniem. Ubytek ten został zrekompensowany przez strumień pary zaczepowej 6,6 barA.

W wyniku włączenia do układu inżektora parowego w instalacji pary upustowej 3,0barA, zapotrzebowanie jej strumienia masy zmalało o 0,009 kg na jeden kilogram pary świeżej, tym samym zmniejszając strumień zapotrzebowanego ciepła niesionego przez parę upustową 3,0 barA o $\Delta \dot{q}_3 = 24$ kJ na kilogram pary świeżej.

Sumarycznie zapotrzebowanie strumienia ciepła pochodzącego z pary zaczepowej zmalało o $\Delta(\dot{q}_2 + \dot{q}_3) = 21,5$ kJ na kilogram pary świeżej. Ubytek tego ciepła pokryty został przez strumień ciepła zawarty w zassanej przez inżektor parze odlotowej z turbiny napędowej. Ze względu na fakt iż tylko część energii zawartej w parze może zostać zamieniona na pracę użyteczną, dostępny spadek entalpii dla turbiny w zmodyfikowanym układzie wzrósł o $\Delta l_i = 3,92$ kJ/kg.

Dalszą poprawę sprawności można zrealizować poprzez zastosowanie inżektorów parowych w instalacji pary zaczepowej 6,6 barA, co umożliwi zmniejszenie strumienia masy pary zapotrzebowanej z tego źródła.

7.3. Układ regeneracyjny z zastosowaniem dwóch inżektorów parowych – układ CR3/2

W układzie z jednym inżektorem, znaczna część ciepła podgrzewającego wodę zasilającą dostarczana jest w części układu regeneracyjnego zasilanego bezpośrednio upustem pary 6,6 barA. Dodatkowo zastosowanie jednego inżektora parowego spowodowało wzrost strumienia masy pary zapotrzebowanej zaczepowej 6,6 barA. Wynika to z faktu zmniejszenia strumienia masy oraz ciepła kondensatu na wejściu do deaeratora. Na rysunku 7.3 przedstawiono kolejną modyfikację, polegającą na zastosowaniu także inżektora parowego w instalacji pary zaczepowej 6,6 barA.

Rys. 7.3 Schemat cieplno-przepływowy modelu turbinowego układu napędowego z zastosowaniem dwóch inżektorów parowych CR3/2

Pierwszy inżektor, tak jak dla układu CR3/1, zasila podciśnieniowy wymiennik ciepła w którym woda kotłowa podgrzewana jest do temperatury 80°C. Drugi inżektor zasila deaerator, w którym, ze względu na możliwe do uzyskania ciśnienia pary opuszczającej inżektor, temperatura podgrzania wody wynosi 100 °C. Dalsze podgrzanie wody tak jak w układzie referencyjnym realizowane jest w nadciśnieniowym wymienniku ciepła zasilanym bezpośrednio z upustu pary 6,6 barA, do temperatury 140 °C.

Model matematyczny opisano układem równań bilansowych 7.16 – 7.19 oraz 7.12, 7.13:

$$(\dot{m}_{21}(i_{21} - i_{22}) - \dot{m}_{13}(i_{13} - i_{12}) = 0$$
(7.16)

$$\dot{m}_{21}\dot{i}_{22} + \dot{m}_{19}\dot{i}_{19} + \dot{m}_{16}\dot{i}_{16} + \dot{m}_{10}\dot{i}_{10} = \dot{m}_{11}\dot{i}_{11} \tag{7.17}$$

$$\dot{m}_{21} + \dot{m}_{19} + \dot{m}_{16} + \dot{m}_{10} = \dot{m}_{11} = 1 \tag{7.18}$$

$$\dot{m}_{14}(i_{14} - i_{15}) - \dot{m}_{10}(i_{10} - i_{9}) = 0 \tag{7.19}$$

Wyniki obliczeń bilansu cieplnego układu przedstawiono w tabeli 7.3.
Płaszczyzna	P abs	t	i	ṁ	
kontrolna	[barA]	[°C]	[kJ/kg]	[kg/s]	
1	59,5	520	3470	1,0000	
2	6,6	245	2943	0,0958	
3=C1	3	170	2803	0,0596	
4	0,066	38	2300	0,8446	
5	0,066	38	2300	0,0129	
6	0,05	32	2290	0,8316	
7	0,05	32	2290	0,8316	
8	0,05	32	138	0,8316	
9	10	32	138	0,8316	
10	10	80	335,8	0,8316	
11	1,061	100	419,2	1,0000	
12	70	100	419,2	1,0000	
13	70	140	593,5	1,0000	
14=L1	0,611	124,4	2729,3	0,0695	
15	0,611	85	363,5	0,0695	
16	10	85	363,5	0,0695	
17=X1	0,066	38	2300	0,0099	
18=C2	6,6	245	2943	0,0211	
19=L2	1,061	192,7	2860,8	0,0241	
20=X2	0,066	38	2300	0,0030	
21	6,6	245	2943	0,0747	
22	4,16	145	610,6	0,0747	
Obliczenia wy	/konane dla	б1	0,167		
stopni e	zekcji	б2	0,1	.43	

Tab. 7.3 Parametry termodynamiczne czynnika roboczego w płaszczyznach kontrolnych turbinowego układu napędowego z zastosowaniem dwóch inżektorów parowych CR3/2

$$\eta_{CR3/2} = \frac{\dot{m}_1(i_1 - i_4) - \dot{m}_2(i_2 - i_4) - \dot{m}_3(i_3 - i_4)}{\dot{m}_1(i_1 - i_{13})} = 0,37494$$
(7.20)

natomiast w wyniku zastosowanej modyfikacji stopień regeneracji układu odpowiada:

$$\mathcal{E}_{CR3/2} = \frac{\eta_{CR3/2} - \eta_{CRref}}{\eta_{CRref}} = 0,513\%$$
(7.21)

Zastosowanie kolejnego inżektora parowego spowodowało pogłębienie się utylizacji ciepła skraplania oddawanego w skraplaczu głównym. Stopień regeneracji układu wzrósł o kolejne $\Delta e = 0,147$ % osiągając wartość $\mathcal{E}_{CR3/2} = 0,513$ %. Wzrost ten jest spowodowany, tak jak w przypadku układu z jednym inżektorem, dalszym zmniejszaniem się strumienia ciepła niesionego przez parę upustową, zapotrzebowanego przez regeneracyjny układ podgrzewania wody.

W przypadku zastosowania dwóch inżektorów parowych, po jednym na każdy upust pary dla obu strumieni, odnotowano zmniejszenie strumienia pary względem układu referencyjnego. Dla tej modyfikacji dodatkowy niewielki spadek strumienia masy pary z upustu 3,0 barA spowodowany jest zmniejszeniem się strumienia kondensatu ze skraplacza głównego, którego wartość zmniejszyła się z poziomu $\dot{m}_{7re} = 0,8342$ na $\dot{m}_{73/2} = 0,8316$.

Wielkość strumienia ciepła z upustów pary zmniejszyła się o kolejne 6,47 kJ na kilogram pary świeżej, osiągając poziom $\Delta(\dot{q}_2 + \dot{q}_3) = 27,82$ kJ, względem układu referencyjnego. Wynik ten przełożył się na wzrost pracy wewnętrznej turbiny o kolejne $\Delta l_{i CR3/2} = 1,48$ kJ na kilogram pary świeżej. W rezultacie wyliczona wielkość sprawności entalpowej wynosi η_{CR} /2 = 0,37494.

Zastosowanie inżektora w układzie upustu pary 6,6 barA pomogło zwiększyć stopień regeneracji układu pomimo konieczności obniżenia temperatury w deaeratorze do 100 °C, ze względu na możliwe do uzyskania ciśnienia pary opuszczającej inżektor parowy.

Drugą opcję stanowi zastosowanie dodatkowego wymiennika ciepła w niskociśnieniowej części układu regeneracyjnego podgrzewania wody kotłowej. Dwustopniowe podgrzewanie wody pozwoli na optymalny dobór stopni eżekcji dla poszczególnych stopni. Zabieg ten spowoduje zwiększenie sumarycznego strumienia pary odlotowej co in plus zmieni stopień regeneracji układu.

7.4. Układ regeneracyjny z zastosowaniem trzech inżektorów parowych oraz dodatkowego podciśnieniowego wymiennika ciepła – układ CR4/3

Jak wskazują wyniki analizy przedstawionej w rozdziale 6.3.2. zastosowanie dodatkowego inżektora parowego w niskich zakresach temperatur wody zasilającej, spowoduje poprawę sprawności dzięki możliwości doboru niższego stopnia eżekcji dla dodatkowego wymiennika ciepła, a co za tym idzie większego wykorzystania strumienia ciepła odpadowego. Kolejną propozycją dalszej modyfikacji układu jest zastosowanie dodatkowego wymiennika ciepła zasilanego z osobnego inżektora parowego. Proponowany układ poddano analizie w trzech wariantach: CR 4/3 – w którym wymienniki zasilane są z niezależnych inżektorów, oraz dwóch układów CR4/3 2s1 i CR4/3 2s2, wykorzystujących dwustopniowe zespoły inżektorowe

7.4.1. Układ z trzema niezależnymi inżektorami parowymi CR4/3

Na rysunku 7.4 przedstawiono schemat cieplno-przepływowy układu z zastosowaniem czterech wymienników ciepła oraz trzech niezależnych inżektorów parowych. Kondensat ze skraplacza głównego kierowany jest przez dwa podciśnieniowe wymienniki ciepła, w których podgrzewany jest odpowiednio do 60 oraz 80 °C, do deaeratora. W zbiorniku mieszankowym następuje podgrzanie wody do temperatury 100 °C. Dalsze podgrzewanie jak w poprzednich przypadkach (CRref, CR3/1 oraz CR3/2) zachodzi w podgrzewaczu nadciśnieniowym do temperatury 140 °C.

Rys. 7.4 Schemat cieplno-przepływowy modelu turbinowego układu napędowego z zastosowaniem trzech niezależnych inżektorów parowych oraz dodatkowego niskociśnieniowego podgrzewacza CR4/3

Model matematyczny opisano układem równań bilansowych 7.22 – 7.26 oraz 7.12, 7.13:

$$\dot{m}_{29}(i_{28} - i_{29}) - \dot{m}_{14}(i_{14} - i_{13}) = 0$$
(7.22)

$$\dot{m}_{29}i_{29} + \dot{m}_{26}i_{26} + \dot{m}_{21}i_{23} + \dot{m}_{16}i_{18} + \dot{m}_{11}i_{11} = \dot{m}_{12}i_{12} \tag{7.23}$$

$$\dot{m}_{29} + \dot{m}_{26} + \dot{m}_{21} + \dot{m}_{16} + \dot{m}_{11} = \dot{m}_{12} = 1 \tag{7.24}$$

$$\dot{m}_{21}(i_{21} - i_{22}) - \dot{m}_{11}(i_{11} - i_{10}) = 0 \tag{7.25}$$

$$m_{16}(i_{16} - i_{17}) - \dot{m}_{11}(i_{10} - i_9) = 0$$
 (7.26)

Wyniki obliczeń przeprowadzonego bilansu cieplnego układu przedstawiono w tabeli 7.3.

Płaszczyzna	P abs	t	i	'n
kontrolna	[barA]	[°C]	[kJ/kg]	[kg/s]
1	59,5	520	3470	1,0000
2	6,6	245	2943	0,0974
3	3	170	2803	0,0518
4	0,066	38	2300	0,8507
5	0,066	38	2300	0,0208
6	0,066	38	2300	0,8300
7	0,05	32	2290	0,8300
8	0,05	32	138	0,8300
9	10	32	138	0,8300
10	10	60	252,0	0,8300
11	10	80	335,8	0,8300
12	1,061	100	419,17	1,0000
13	70	100	419,17	1,0000
14	70	140	593,5	1,0000
15=c1	3	170	2803	0,0267
16=l1	0,271	73,4	2633,5	0,0401
17	0,271	65	272,2	0,0401
18	10	65	272,2	0,0401
19=x1	0,066	38	2300	0,0134
20=c2	3	170	2803	0,0251
21=l2	0,611	124,4	2729,3	0,0293
22	0,611	85	356,0	0,0293
23	10	85	356,0	0,0293
24=x2	0,066	38	2300	0,0042
25=c3	6,6	245	2943	0,0227
26=l3	0,84	178,6	2834,0	0,0259
27	0,066	38	2300	0,0032
28	6,6	245	2943	0,0747
29	4,16	145	610,6	0,0747
Obliczenia w	vykonane	б1	0,	500
dla		б2	0,	167
stopni e	żekcji	б3	0,	143

Tab. 7.4 Parametry termodynamiczne czynnika roboczego w płaszczyznach kontrolnych turbinowego układu napędowego z zastosowaniem trzech niezależnych inżektorów parowych oraz dodatkowego niskociśnieniowego podgrzewacza CR4/3

$$\eta_{CR4/3} = \frac{\dot{m}_1(i_1 - i_4) - \dot{m}_2(i_2 - i_4) - \dot{m}_3(i_3 - i_4)}{\dot{m}_1(i_1 - i_{14})} = 0,37590$$
(7.27)

natomiast w wyniku zastosowanej modyfikacji stopień regeneracji układu odpowiada:

$$\mathcal{E}_{CR4/3} = \frac{\eta_{CR4/3} - \eta_{CRref}}{\eta_{CRref}} = 0,7726\%$$
(7.28)

Zastosowanie kolejnego wymiennika ciepła potwierdziło wyniki analizy przedstawionej w rozdziale 6.3.2. Zastosowanie dodatkowego inżektora zasilającego podciśnieniowy wymiennik ciepła podgrzewający kondensat ze skraplacza do temperatury 60 °C, umożliwiło zoptymalizowanie procesu podgrzewania wody w tym zakresie poprzez odpowiedni dobór stopnia eżekcji. Dzięki temu zabiegowi wzrósł strumień pary zasysanej do $\dot{m}_5 = 0,0207$ kg na kilogram pary świeżej, a tym samy wzrósł użytecznie wykorzystany strumień ciepła skraplania pary odlotowej. Strumień zapotrzebowanej pary z upustu 3,0 barA uległ zmniejszeniu do poziomu $\dot{m}_3 = 0,0518$, zmniejszając tym samy strumień ciepła pobranego z upustu o kolejne 20,7 kJ na kilogram pary świeżej. Jednocześnie w wyniku zmniejszonego sumarycznego strumienia ciepła doprowadzonego do deaeratora, wzrósł strumień zapotrzebowanej pary upustowej 6,6 barA do $\dot{m}_2 = 0,0974$, zwiększając pobrany z turbiny strumień ciepła o $\Delta \dot{q}_2 = 4,47$ kJ. Sumarycznie jednak strumień pobranego ciepła z zaczepów turbiny zmalał o $\Delta(\dot{q}_2 + \dot{q}_3) = 16,23$ względem układu CR3/2 oraz do $\Delta(\dot{q}_2 + \dot{q}_3) = 44,1$ kJ względem układu referencyjnego. Wartości tej energii doprowadzonej do turbiny przełożyły się na wzrost pracy wewnętrznej turbiny o kolejne $\Delta l_{i CR4/3} = 2,885$ kJ na kilogram pary świeżej, dając sumarycznie wynik równy $\Delta l_{i CR4/3} = 8,290$ kJ w porównaniu z układem referencyjnym.

Uzyskana wartość sprawności proponowanego układu wynosi $\eta_{CR4/3} = 0,3759$, co przekłada się na stopień regeneracji względem układu referencyjnego $\mathcal{E}_{CR/3} = 0,7726\%$.

Prezentowany układ CR4/3, podobnie jak układ CR3/2, ze względu na możliwe do uzyskania ciśnienia pary opuszczającej inżektory, wykorzystując inżektory regeneracyjne podgrzewa wodę jedynie do temperatury 100 °C. W celu uzyskania wyższych temperatur wody zasilającej konieczne jest zastosowania układów z wykorzystaniem dwustopniowego sprężania pary. Analizie podano dwa warianty układów ze sprężaniem dwustopniowym:

CR4/3 2s1 – z jednym zespołem inżektorowym oraz jednym inżektorem niezależnym (inżektor pierwszego stopnia),

CR4/3 2s2 – z jednym zespołem inżektorowym oraz jednym inżektorem niezależnym (inżektor drugiego stopnia stopnia).

7.4.2. Układ z zastosowaniem czterech wymienników ciepła, trzech inżektorów parowych CR4/3 2s1

Wariant I – CR4/3 2s1 – Układ składający się z czterech wymienników oraz trzech inżektorów parowych, w tym jednego niezależnego inżektora (pierwszego stopnia) oraz dwóch inżektorów stanowiących dwustopniowy zespół inżektorowy (inżektory drugiego oraz trzeciego stopnia).

Schemat cieplno-przepływowy rozpatrywanego układu CR4/3 2s1 przedstawiono na rysunku 7.5. Tak jak w poprzednich układach zastosowano odpowiednio dla kolejnych stopni podgrzania wody zasilającej kocioł 60 - 80 - t nasycenia – 140 °C.

Rys. 7.5 Schemat cieplno-przepływowy modelu turbinowego układu napędowego z zastosowaniem jednego niezależnego inżektora parowego oraz jednego dwustopniowego zespołu inżektorowego CR4/3 2s1

Model matematyczny opisano układem równań bilansowych 7.29 – 7.33 oraz 7.12, 7.13:

$$\dot{m}_{30}(i_{29} - i_{30}) - \dot{m}_{14}(i_{14} - i_{13}) = 0$$
(7.29)

$$\dot{m}_{30}i_{30} + \dot{m}_{27}i_{27} + \dot{m}_{22}i_{24} + \dot{m}_{16}i_{18} + \dot{m}_{11}i_{11} = \dot{m}_{12}i_{12} \tag{7.30}$$

$$\dot{m}_{30} + \dot{m}_{27} + \dot{m}_{22} + \dot{m}_{16} + \dot{m}_{11} = \dot{m}_{12} = 1 \tag{7.31}$$

$$\dot{m}_{22}(i_{22} - i_{23}) - \dot{m}_{11}(i_{11} - i_{10}) = 0 \tag{7.32}$$

$$\dot{m}_{16}(i_{16} - i_{17}) - \dot{m}_{11}(i_{10} - i_{9}) = 0$$
(7.33)

Obliczeń układu dokonano dla różnych stopni eżekcji inżektora trzeciego stopnia w celu wyznaczenia maksimum krzywej sprawności w funkcji stopnia eżekcji inżektora trzeciego stopnia (Rys. 7.6.). W tabeli 7.5 przedstawiono wyniki obliczeń układu dla stopnia eżekcji $\sigma_3 = 0,429$, dla którego sprawność układu uzyskuje maksimum.

Płaszczyzna				
kontrolna	P abs	t	i	ṁ
	[barA]	[°C]	[kJ/kg]	[kg/s]
1	59,5	520	3470	1,0000
2	6,6	245	2943	0,0880
3	3	170	2803	0,0627
4	0,066	38	2300	0,8493
5	0,066	38	2300	0,0194
6	0,066	38	2300	0,8300
7	0,05	32	2290	0,8300
8	0,05	32	138	0,8300
9	10	32	138	0,8300
10	10	60	252,0	0,8300
11	10	80	335,8	0,8300
12	1,388	109	457,3	1,0000
13	70	109	457,3	1,0000
14	70	140	593,5	1,0000
15=c1	3	170	2803	0,0267
16=l1	0,271	73,4	2633,5	0,0401
17	0,271	65	272,2	0,0401
18	10	65	272,2	0,0401
19=x1	0,066	38	2300	0,0134
20=c2	3	170	2803	0,0360
21=12	0,611	124,5	2729,3	0,0420
22	0,611	124,447	2729,3	0,0293
23	0,611	85	356,0	0,0293
24	10	85	356,0	0,0293
25=x2	0,066	38	2300	0,0060
26=c3	6,6	245	2943	0,0296
27=13	1,388	201,7	2877,0	0,0423
28	0,611	124,5	2729,3	0,0127
29	6,6	245	2943	0,0584
30	4,16	145	610,6	0,0584
Obliczonie	wkonana	61	0,5	00
dla	укопапе	б2	0,1	.67
stopni e	żekcji	б3	0,4	29

Tab. 7.5 Parametry termodynamiczne czynnika roboczego w płaszczyznach kontrolnych turbinowego układu napędowego z zastosowaniem jednego niezależnego inżektora parowego oraz jednego dwustopniowego zespołu inżektorowego CR4/3 2s1

Obliczona sprawność układu wynosi:

$$\eta_{CR4/3\ 2s1} = \frac{\dot{m}_1(i_1 - i_4) - \dot{m}_2(i_2 - i_4) - \dot{m}_3(i_3 - i_4)}{\dot{m}_1(i_1 - i_{14})} = 0,37611$$
(7.34)

natomiast w wyniku zastosowanej modyfikacji stopień regeneracji układu odpowiada:

$$\mathcal{E}_{CR4/3\ 2s1} = \frac{\eta_{CR4/3} - \eta_{CRref}}{\eta_{CRref}} = 0,8299\%$$
(7.35)

Zastosowanie zespołu inżektorowego z dwustopniowym sprężaniem pary umożliwiło podwyższenie temperatury w mieszankowym wymienniku ciepła z t₉ _{CR4/3}=100 °C do t₉ _{CR4/3} _{2s1} = 120 °C. Dzięki temu zabiegowi stopień regeneracji $\mathcal{E}_{CR4/3}$ wzrósł o kolejne $\Delta \mathcal{E} = 0,021$ punktu procentowego osiągając poziom $\mathcal{E}_{CR4/3 2s1} = 0,7935$ % (zgodnie z danymi przedstawionymi w tabeli 7.6 dla t_{12 CR4/3 2s1} = 120 °C oraz $G_3 = 0,2$). Modyfikacja ta pozwoliła na zmniejszenie strumienia ciepła zapotrzebowanego z upustu pary 6,6 barA o $\Delta q_2 = 20,45$ kJ/kg. Zmniejszeniu także uległ strumień masy odessanej pary odlotowej. Ubytek ciepła zapotrzebowanego w układzie regeneracyjnego podgrzewania wody zasilającej kocioł w tym przypadku pokryty został zwiększonym strumieniem pary zaczepowej 3,0 barA. Strumień tego ciepła wzrósł o $\Delta \dot{q}_2 = 23,65$ kJ/kg. Sumarycznie ilość ciepła pobranego z zaczepów pary wzrosła o $\Delta (\dot{q}_2 + \dot{q}_3) = 3,19$ kJ/kg. Jednakże ze względu na pobranie większej ilości tego ciepła z niższego poziomu energetycznego sumarycznie przełożyło się to na wzrost pracy wewnętrznej turbiny do poziomu $l_{i CR4/3 2s1} = 1081,5$ kJ/kg.

Tab. 7.6 Zestawienie wyników oblicxzeń bilansów cieplnych układu CR4/3 2s1 dla różnych stopni eżekcji G₃ inżektora trzeciego stopnia

б₃	t ₁₂	$\eta_{CR4/32s1}$	$\mathcal{E}_{CR4/3\ 2s1}$	l _i	↓ q ₂	॑q₃	॑ <i>q_s</i>
[-]	[°C]	[-]	[%]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]
0,500	106	0,376112	0,829386	1081,887	246,8641	167,0183	41,83365
0,429	109	0,376114	0,829876	1081,892	246,7594	167,1175	41,84692
0,376	111	0,376107	0,827922	1081,871	247,0757	166,8445	41,81017
0,333	113	0,376095	0,824642	1081,836	247,6200	166,3699	41,74631
0,250	117,4	0,376044	0,811115	1081,691	249,8949	164,376	41,47814
0,200	120	0,375979	0,793546	1081,502	252,8775	161,7523	41,12535

Dla prezentowanego układu przeprowadzono także analizę pod kątem optymalnej temperatury nasycenia zbiornika mieszankowego, w celu uzyskania maksymalnej sprawności entalpowej układu.

Zgodnie z przeprowadzonymi obliczeniami, zmniejszanie temperatury t₁₂ z początkowo założonej t_{12 CR4/3 2s1} = 120 °C powoduje wzrost sprawności układu. Wynika to z faktu możliwości zwiększania stopnia eżekcji G₃, dzięki czemu dalszemu zmniejszeniu ulega strumień masy zapotrzebowanej z upustu pary 6,6 barA. Zapotrzebowanie na ciepło w tym przypadku kompensowane jest zwiększonymi strumieniami ciepła pochodzącymi z zaczepu pary 3,0 barA oraz pary odlotowej z turbiny napędowej. Zmniejszanie temperatury powoduje jednak zwiększanie zapotrzebowania na parę grzewczą dla ostatniego stopnia podgrzewania wody (podgrzewacza wysokiego ciśnienia). Krzywa sprawności w funkcji temperatury nasycenia dla mieszankowego wymiennika ciepła osiąga maksimum dla temperatury t_{12CR4/32s1} = 109 °C, dla którego maksymalny stopień eżekcji wynosi $\sigma_3 = 0,429$. Dla parametrów tych, sprawność układu wynosi $\eta_{CR4/3} _{2s1} = 0,3761$, co przekłada się na

stopień regeneracji względem układu referencyjnego $\mathcal{E}_{CR4/3 2s1} = 0,8299 \%$. Dalsze zmniejszanie temperatury t₉ powoduje wzrost strumienia masy pary zaczepowej 6,6 barA.

7.4.3. Układ z zastosowaniem czterech wymienników ciepła, trzech inżektorów parowych CR4/3 2s2

Wariant II – CR4/3 2s2 – Układ składający się z czterech wymienników oraz trzech inżektorów parowych, w tym jednego niezależnego inżektora (drugiego stopnia) oraz dwóch inżektorów stanowiących dwustopniowy zespół inżektorowy (inżektory pierwszego oraz trzeciego stopnia).

Schemat cieplno-przepływowy rozpatrywanego układu CR4/3 2s2 przedstawiono na rysunku 7.6.

Rys. 7.6 Schemat cieplno-przepływowy modelu turbinowego układu napędowego z zastosowaniem jednego niezależnego inżektora parowego oraz jednego dwustopniowego zespołu inżektorowego CR4/3 2s2

Model matematyczny opisano układem równań bilansowych 7.36 – 7.40 oraz 7.12, 7.13:

$$\dot{m}_{30}(\dot{i}_{29} - \dot{i}_{30}) - \dot{m}_{14}(\dot{i}_{14} - \dot{i}_{13}) = 0$$
(7.36)

$$\dot{m}_{30}\dot{i}_{30} + \dot{m}_{27}\dot{i}_{27} + \dot{m}_{22}\dot{i}_{24} + \dot{m}_{17}\dot{i}_{19} + \dot{m}_{11}\dot{i}_{11} = \dot{m}_{12}\dot{i}_{12} \tag{7.37}$$

$$\dot{m}_{30} + \dot{m}_{27} + \dot{m}_{22} + \dot{m}_{17} + \dot{m}_{11} = \dot{m}_{12} = 1 \tag{7.38}$$

$$\dot{m}_{22}(i_{22} - i_{23}) - \dot{m}_{11}(i_{11} - i_{10}) = 0 \tag{7.39}$$

$$\dot{m}_{17}(i_{17} - i_{18}) - \dot{m}_{11}(i_{10} - i_9) = 0$$
(7.40)

W tabeli 7.7 przedstawiono szczegółowe wyniki bilansu cieplnego prezentowanego układu dla stopnia eżekcji inżektora nr 3 $G_3 = 0,429$, dla którego uzyskano najwyższą sprawność układu.

Płaszczyzna	P abs	t	i	'n	
kontrolna					
	[barA]	[°C]	[kJ/kg]	[kg/s]	
1	59,5	520	3470	1,0000	
2	6,6	245	2943	0,0930	
3	3	170	2803	0,0568	
4	0,066	38	2300	0,8501	
5	0,066	38	2300	0,0200	
6	0,066	38	2300	0,8301	
7	0,05	32	2290	0,8301	
8	0,05	32	138	0,8301	
9	10	32	138	0,8301	
10	10	60	252,0	0,8301	
11	10	80	335,8	0,8301	
12	1,239	106,4	446,2	1,0000	
13	70	106,4	446,2	1,0000	
14	70	140	593,5	1,0000	
15=c1	3	170	2803	0,0317	
16=l1	0,271	73,4	2633,5	0,0475	
17	0,271	73,4	2633,5	0,0401	
18	0,271	65	272,2	0,0401	
19	10	65	272,2	0,0401	
20=x1	0,066	38	2300	0,0158	
21=c2	3	170	2803	0,0251	
22=12	0,611	124,4	2729,3	0,0293	
23	0,611	85	356,0	0,0293	
24	10	85	356,0	0,0293	
25=x2	0,066	38	2300	0,0042	
26=c3	6,6	245	2943	0,0299	
27=l3	1,239	205,5	2879,3	0,0374	
28	0,271	73,4	2633,5	0,0075	
29	6,6	245	2943	0,0632	
30	4,16	145	610,6	0,0632	
Obliczenia w	wkonane	б1	0,5	00	
dla	ykunane	б2	0,167		
stopni e	żekcji	б3	50		

Tab. 7.7 Parametry termodynamiczne czynnika roboczego w płaszczyznach kontrolnych turbinowego układu napędowego z zastosowaniem jednego niezależnego inżektora parowego oraz jednego dwustopniowego zespołu inżektorowego CR4/3 2s2

$$\eta_{CR4/3\ 2S1} = \frac{\dot{m}_1(i_1 - i_4) - \dot{m}_2(i_2 - i_4) - \dot{m}_3(i_3 - i_4)}{\dot{m}_1(i_1 - i_{14})} = 0,37601$$
(7.41)

natomiast w wyniku zastosowanej modyfikacji stopień regeneracji układu odpowiada:

$$\mathcal{E}_{CR4/3\ 2s1} = \frac{\eta_{CR4/3\ 2s1} - \eta_{CRref}}{\eta_{CRref}} = 0,80237\%$$
(7.42)

W tabeli 7.8 przedstawiono zbiorcze wyniki obliczeń poszczególnych układów w zależności od temperatury nasycenia w zbiorniku mieszankowym oraz dobranego stopnia eżekcji G_3 .

Tab. 7.8 Zestawienie wyników obliczeń bilansów cieplnych układu CR4/3 2s1 dla różnych stopni eżekcji G₃ inżektora trzeciego stopnia

б₃	t ₁₂	$\eta_{CR4/3\ 2s2}$	E _{CR4/3 2s2}	l _i	\dot{q}_2	\dot{q}_3	\dot{q}_s
[-]	[°C]	[-]	[%]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]
0,333	100	0,375926	0,779544	1081,352	263,5908	149,5367	42,55509
0,25	106,4	0,376011	0,80237	1081,597	260,9828	151,4065	43,31626
0,2	109,6	0,375989	0,796242	1081,531	261,6602	150,9321	43,12327
0,167	112,7	0,375968	0,790761	1081,473	262,2655	150,5086	42,951
0,143	115	0,37594	0,783229	1081,392	263,1055	149,9166	42,71012

Zastosowanie układu CR 4/3 2s2 spowodowało podwyższenie sprawności względem układu CR4/3. Pomimo wyższego stopnia wykorzystania strumienia ciepła pary odlotowej niż dla układu CR 4/3 2s1, stopień regeneracji względem układu referencyjnego jest niższy o $\Delta \varepsilon = 0,0275$ punktu procentowego. Wynika to z faktu znacznie wyższego udziału ciepła niesionego parę zaczepową 6,6 barA w ogólnym bilansie zapotrzebowanego ciepła pary grzewczej układu regeneracyjnego podgrzewania wody zasilającej kocioł.

Na podstawie przeprowadzonej analizy, wnioskować można, iż dalsza poprawa sprawności układu jest możliwa jedynie poprzez zastosowanie kolejnego wymiennika ciepła w zakresie temperatur 100 - 140 °C.

7.5. Złożone układy regeneracyjne z wykorzystaniem pięciu wymienników ciepła oraz czterech inżektorów regeneracyjnych. Układy CR5/4

Dla układów z zastosowaniem dodatkowego wymiennika ciepła w zakresie temperatur 100-140 °C, rozważyć należy najdogodniejsze usytuowanie dodatkowego wymiennika.

W tym celu analizie poddano różne wersje dwóch wariantów podstawowych układów wykorzystujących pięć wymienników ciepła oraz cztery inżektory parowe w tym jeden bądź dwa zespoły inżektorowej:

CR5/4 N – z dodatkowym wymiennikiem w części niskociśnieniowej (między skraplaczem a deaeratorem).

CR5/4 W – z dodatkowym wymiennikiem w części wysokociśnieniowej (między deaeratorem a kotłem).

Zastosowanie inżektorów do wyższych temperatur jak wskazała wcześniejsza analiza wymaga zastosowania zespołów inżektorowych z dwustopniowym sprężaniem pary. Dlatego też analizowane układu przebadano w dwóch wariantach:

2s1 - z zastosowaniem czterech inżektorów parowych w tym jednego zespołu inżektorowego,

2s2 - z zastosowaniem czterech inżektorów parowych stanowiących dwa zespoły inżektorowe.

7.5.1. Złożony układ regeneracyjny z dodatkowym wymiennikiem ciepła w części niskociśnieniowej oraz jednym zespołem inżektorowym CR5/4 N 2s1

Pierwszym z rozpatrywanych układów z zastosowaniem pięciu wymienników ciepła jest układ CR5/4 2s1, którego schemat cieplno-przepływowy przedstawiono na rysunku 7.7. Układ ten jest modyfikacją układu CR4/3, polegającą na dostawieniu dodatkowego wymiennika ciepła w części niskociśnieniowej regeneracyjnego układu wody zasilającej kocioł. Zastosowanie dodatkowego wymiennika ma na celu zmniejszenie strumienia zapotrzebowanej pary z upustu 6,6 barA, a w konsekwencji zwiększenie pracy wewnętrznej turbiny. W układzie tym zastosowano cztery inżektory parowe, z których stopień trzeci oraz czwarty tworzą dwustopniowy zespół inżektorowy. Końcowe podgrzanie wody kotłowej realizowane jest w podgrzewaczu wysokociśnieniowym zasilanym bezpośrednio z upustu pary 6,6 barA.

Rys. 7.7 Schemat cieplno-przepływowy modelu turbinowego układu napędowego, wykorzystującego pięć wymienników ciepła z zastosowaniem czterech inżektorów parowych, w tym jednego, dwustopniowego zespołu inżektorowego CR5/4 N 2s1

Model matematyczny opisano układem równań bilansowych 7.43 – 7.48 oraz 7.12, 7.13:

$$c\dot{m}_{36}(i_{35} - i_{36}) - \dot{m}_{15}(i_{15} - i_{16}) = 0$$
(7.43)

$$\dot{m}_{36}\dot{i}_{36} + \dot{m}_{33}\dot{i}_{33} + \dot{m}_{28}\dot{i}_{30} + \dot{m}_{22}\dot{i}_{24} + \dot{m}_{17}\dot{i}_{19} + \dot{m}_{12}\dot{i}_{12} = \dot{m}_{13}\dot{i}_{13} \tag{7.44}$$

$$\dot{m}_{36} + \dot{m}_{33} + \dot{m}_{28} + \dot{m}_{22} + \dot{m}_{17} + \dot{m}_{12} = \dot{m}_{13} = 1 \tag{7.45}$$

$$\dot{m}_{28}(i_{28} - i_{29}) - \dot{m}_{12}(i_{12} - i_{11}) = 0 \tag{7.46}$$

$$\dot{m}_{22}(i_{22} - i_{23}) - \dot{m}_{12}(i_{11} - i_{10}) = 0 \tag{7.47}$$

$$(\dot{m}_{17}(\dot{i}_{17} - \dot{i}_{18}) - \dot{m}_{12}(\dot{i}_{10} - \dot{i}_{9}) = 0$$
(7.48)

W tabeli 7.9 przedstawiono szczegółowe wyniki bilansu cieplnego prezentowanego układu dla stopnia eżekcji $\sigma_3 = 0,167$ oraz $\sigma_4 = 0,500$, dla którego uzyskano najwyższą sprawność układu.

Płaszczyzna	P abs	t	i	ṁ
kontrolna	[barA]	[°C]	[kJ/kg]	[kg/s]
1	59,5	520	3470	1,0000
2	6,6	245	2943	0,0963
3	3	170	2803	0,0518
4	0,066	38	2300	0,8518
5	0,066	38	2300	0,0219
6	0,066	38	2300	0,8299
7	0,05	32	2290	0,8299
8	0,05	32	138	0,8299
9	10	32	138	0,8299
10	10	60	252,0	0,8299
11	10	80	335,8	0,8299
12	10	93,4	392,2	0,8299
13	1,703	115,2	483,5	1,0000
14	70	115,2	483,5	1,0000
15	70	140	593,5	1,0000
16=C1	3	170	2803	0,0267
17=L1	0,271	73,4	2633,5	0,0401
18	0,271	65	272,2	0,0401
19	10	65	272,2	0,0401
20=x1	0,066	38	2300	0,0134
21=C2	3	170	2803	0,0251
22=L2	0,611	124,4	2729,3	0,0293
23	0,611	85	356,0	0,0293
24	10	85	356,0	0,0293
25=x2	0,066	38	2300	0,0042
26=c3	6,6	245	2943	0,0263
27=L3	0,959	186,7	2849,3	0,0192
28	0,959	186,7	2849,3	0,0192
29	0,959	98,4	412,6	0,0192
30	10	98,4	412,6	0,0192
31=x3	0,066	38,0	2300,0	0,0044
32=c4	6,6	245	2943	0,0229
33=L4	1,703	218,9	2910,0	0,0343
34=x4	0,959	186,7	2849,3	0,0114
35	6,6	245	2943	0,0472
36	4,16	145	610,6	0,0472
		б1	0,5	00
Obliczenia v	vykonane	б2	0,1	.67
dla	1	б3	0,1	.67
stopni e	eżekcji	б4 0,500		

Tab. 7.9 Parametry termodynamiczne czynnika roboczego w płaszczyznach kontrolnych turbinowego układu napędowego wykorzystującego pięć wymienników ciepła z zastosowaniem czterech inżektorów parowych, w tym jednego, dwustopniowego zespołu inżektorowego CR5/4 2s1

$$\eta_{CR5/4N2s1} = \frac{\dot{m}_1(i_1 - i_4) - \dot{m}_2(i_2 - i_4) - \dot{m}_3(i_3 - i_4)}{\dot{m}_1(i_1 - i_{15})} = 0,37615$$
(7.49)

natomiast w wyniku zastosowanej modyfikacji stopień regeneracji układu odpowiada:

$$\mathcal{E}_{CR5/4N\,2s1} = \frac{\eta_{CR5/4N\,2s1} - \eta_{CRref}}{\eta_{CRref}} = 0,83807\% \tag{7.50}$$

W tabeli 7.10 przedstawiono zbiorcze wyniki obliczeń badanych układów w zależności od temperatury nasycenia w zbiorniku mieszankowym oraz dobranego stopnia eżekcji G_3 oraz G_4 .

Tab. 7.10 Zestawienie wyników obliczeń bilansów cieplnych układu CR5/4 N 2s1 dla różnych stopni eżekcji inżektora trzeciego stopnia G₃ oraz inżektora 4czwartego stopnia G₄.

б₃	б4	t ₁₃	t ₁₂	$\eta_{CR5/4N2s1}$	$\mathcal{E}_{CR5/4N \ 2s1}$	l _i	ġ₂	॑ q_3	↓ <i>q_s</i>
[-]	[-]	[°C]	[°C]	[-]	[%]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]
0,143	0,143	132,0	96,3	0,37606	0,813771	1081,72	271,38	138,11	46,30
0,143	0,167	130,0	96,3	0,37607	0,817796	1081,77	271,19	138,11	46,49
0,143	0,200	128,7	96,3	0,37609	0,822396	1081,82	270,98	138,11	46,70
0,143	0,250	126,1	96,3	0,37611	0,827547	1081,87	270,74	138,10	46,93
0,143	0,333	122,5	96,3	0,37613	0,832754	1081,93	270,50	138,10	47,17
0,143	0,376	120,9	96,3	0,37613	0,83423	1081,94	270,43	138,10	47,23
0,143	0,429	119,2	96,3	0,37614	0,835263	1081,95	270,38	138,10	47,27
0,143	0,500	117,4	96,3	0,37614	0,835961	1081,96	270,35	138,10	47,30
0,167	0,143	130,8	93,4	0,37605	0,813525	1081,72	271,39	138,11	46,29
0,167	0,429	117,2	93,4	0,37614	0,837661	1081,98	270,27	138,10	47,38
0,167	0,500	115,2	93,4	0,37615	0,838069	1081,98	270,25	138,10	47,39
0,200	0,333	118,1	89,8	0,37611	0,829615	1081,89	270,64	138,10	47,01
0,200	0,429	114,5	89,8	0,37612	0,832257	1081,92	270,52	138,10	47,12

7.5.2. Złożony układ regeneracyjny z dodatkowym wymiennikiem ciepła w części niskociśnieniowej oraz jednym zespołem inżektorowym CR5/4 N 2s2

Kolejny analizowany układ stanowi wariancje układu CR5/4 N 2s1, w którym zastosowano zamiast jednego zespołu inżektorowego oraz dwóch niezależnych inżektorów regeneracyjnych, dwa zespoły inżektorowe. Tak jak poprzedni układ składa się on z pięciu wymienników ciepła, trzech w układzie niskiego ciśnienia, deaeratora oraz jednego wymiennika ciepła w układzie wysokiego ciśnienia, zasilanego bezpośrednio parą upustową 6,6 barA. Schemat cieplno-przepływowy rozpatrywanego układu przedstawiono na rys. 7.8.

Rys. 7.8 Schemat cieplno-przepływowy modelu turbinowego układu napędowego, wykorzystującego pięć wymienników ciepła z zastosowaniem dwóch dwustopniowych zespołów inżektorowych CR5/4 N 2s2

Model matematyczny opisano układem równań bilansowych 7.51 – 7.56 oraz 7.12, 7.13:

$$r\dot{m}_{37}(i_{36} - i_{37}) - \dot{m}_{15}(i_{15} - i_{14}) = 0$$
(7.51)

$$\dot{m}_{37}i_{37} + \dot{m}_{34}i_{34} + \dot{m}_{29}i_{31} + \dot{m}_{24}i_{26} + \dot{m}_{18}i_{20} + \dot{m}_{12}i_{12} = \dot{m}_{13}i_{13}$$
(7.52)

$$\dot{m}_{37} + \dot{m}_{34} + \dot{m}_{29} + \dot{m}_{24} + \dot{m}_{18} + \dot{m}_{12} = \dot{m}_{13} = 1 \tag{7.53}$$

$$\dot{m}_{29}(i_{29} - i_{30}) - \dot{m}_{12}(i_{12} - i_{11}) = 0 \tag{7.54}$$

$$\dot{m}_{24}(i_{24} - i_{25}) - \dot{m}_{12}(i_{11} - i_{10}) = 0 \tag{7.55}$$

$$\int \dot{m}_{18}(i_{18} - i_{19}) - \dot{m}_{12}(i_{10} - i_{9}) = 0$$
(7.56)

W tabeli 7.11 przedstawiono szczegółowe wyniki bilansu cieplnego prezentowanego układu dla stopnia eżekcji $\sigma_3 = 0,333$ oraz $\sigma_4 = 0,250$ dla których uzyskano najwyższą sprawność układu.

Płaszczyzna	P abs	t	i	ṁ
kontrolna	[barA]	[°C]	[kJ/kg]	[kg/s]
1	59,5	520	3470	1,0000
2	6,6	245	2943	0,0882
3	3	170	2803	0,0616
4	0,066	38	2300	0,8502
5	0,066	38	2300	0,0204
6	0,066	38	2300	0,8298
7	0,05	32	2290	0,8298
8	0,05	32	138	0,8298
9	10	32	138	0,8298
10	10	60	252,0	0,8298
11	10	80	335,8	0,8298
12	10	95,2	399,7	0,8298
13	1,831	117,4	493,0	1,0000
14	70	125	493,0	1,0000
15	70	140	593,5	1,0000
16=C1	3	170	2803	0,0303
17=L1	0,611	124,4	2729,3	0,0455
18	0,271	73,4	2633,5	0,0401
19	0,271	65	272,2	0,0401
20	10	65	272,2	0,0401
21	0,066	38	2300	0,0152
22=C2	3	170	2803	0,0313
23=L2	0,611	124,4	2729,3	0,0365
24	0,611	124,4	2729,3	0,0293
25	0,611	85	356,0	0,0293
26	10	85	356,0	0,0293
27	0,066	38	2300	0,0052
28=c3	6,6	245	2943	0,0163
29=L3	1,022	194,2	2863,8	0,0217
30	1,022	100,2	420,1	0,0217
31	10	100,2	420,1	0,0217
32=x3	0,271	73,4	2633,5	0,0054
33=c4	6,6	245	2943	0,0288
34=L4	1,831	213,4	2898,5	0,0361
35=x4	0,611	124,4	2729,3	0,0072
36	6,6	245	2943	0,0431
37	4,16	145	610,6	0,0431
		б1	0,5	500
Obliczenia v	wykonane	б2	0,1	.67
dla	Э	б3	0,3	33
stopni e	eżekcji	б4	0,2	250

Tab. 7.11 Parametry termodynamiczne czynnika roboczego w płaszczyznach kontrolnych turbinowego układu napędowego wykorzystującego pięć wymienników ciepła z zastosowaniem dwóch dwustopniowych zespołów inżektorowych CR5/4 N 2s2

$$\eta_{CR5/4N\,2S2} = \frac{\dot{m}_1(i_1 - i_4) - \dot{m}_2(i_2 - i_4) - \dot{m}_3(i_3 - i_4)}{\dot{m}_1(i_1 - i_{15})} = 0,37625 \tag{7.57}$$

natomiast w wyniku zastosowanej modyfikacji stopień regeneracji układu odpowiada:

$$\mathcal{E}_{CR5/4N\,2s2} = \frac{\eta_{CR5/4N\,2s2} - \eta_{CRref}}{\eta_{CRref}} = 0,86498\% \tag{7.58}$$

W tabeli 7.12 przedstawiono zbiorcze wyniki obliczeń poszczególnych układów w zależności od temperatur za wymiennikami ciepła oraz dobranego stopnia eżekcji G_3 oraz G_4 .

Tab. 7.12 Zestawienie wyników obliczeń bilansów cieplnych układu CR5/4 N 2s2 dla różnych stopni eżekcji inżektora trzeciego stopnia G₃ oraz inżektora 4czwartego stopnia G₄.

б₃	б4	t ₁₂	t ₁₃	$\eta_{CR5/4 N 2s2}$	$\epsilon_{CR5/4 N 2s2}$	l _i	↓ <i>q</i> ₂	॑ q_3	↓ <i>q_s</i>
[-]	[-]	[°C]	[°C]	[-]	[%]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]
0,143	0,143	110,0	125	0,37603	0,80823	1081,66	257,10	155,77	42,90
0,167	0,143	107,7	125	0,37608	0,82123	1081,80	255,27	157,25	43,25
0,200	0,143	104,7	125	0,37613	0,83422	1081,94	253,31	158,90	43,57
0,250	0,143	100,7	125	0,37618	0,84582	1082,07	251,36	160,60	43,81
0,333	0,143	95,2	125	0,37619	0,84977	1082,11	250,04	161,98	43,76
0,376	0,143	92,9	125	0,37618	0,84688	1082,08	250,00	162,19	43,58
0,333	0,200	95,2	120,7	0,37623	0,86155	1082,24	248,07	163,71	43,99
0,333	0,250	95,2	117,4	0,37625	0,86498	1082,27	247,51	164,19	44,05
0,333	0,333	95,2	113	0,37624	0,86205	1082,24	248,05	163,70	43,99

7.5.3. Złożony układ regeneracyjny z dodatkowym wymiennikiem ciepła w części wysokociśnieniowej oraz jednym zespołem inżektorowym CR5/4 W 2s1

Zastosowanie dodatkowego wymiennika ciepła w części niskociśnieniowej wprowadza dodatkowe skomplikowanie układu poprzez konieczność zastosowania dodatkowej pompy skroplin. W celu wyeliminowania dodatkowego układu pompowego rozważono możliwość zastosowania dodatkowego wymiennika ciepła w części wysokociśnieniowej, a więc za deaeratorem. Schemat cieplno-przepływowy układu z zastosowaniem dwóch wymienników ciepła w części wysokiego ciśnienia oraz czterech inżektorów parowych z jednym dwustopniowym zespołem inżektorowym przedstawiono na rysunku 7.9

Rys. 7.9 Schemat cieplno-przepływowy modelu turbinowego układu napędowego, wykorzystującego pięć wymienników ciepła oraz z zastosowaniem czterech inżektorów parowych, w tym jednego, dwustopniowego zespołu inżektorowego CR5/4 W 2s1

Model matematyczny opisano układem równań bilansowych 7.59 – 7.64 oraz 7.12, 7.13:

$$\int \dot{m}_{35}(i_{34} - i_{35}) - \dot{m}_{15}(i_{15} - i_{14}) = 0 \tag{7.59}$$

$$\dot{m}_{32}(i_{31} - i_{32}) - \dot{m}_{15}(i_{14} - i_{13}) = 0 \tag{7.60}$$

$$\dot{m}_{35}\dot{i}_{35} + \dot{m}_{32}\dot{i}_{32} + \dot{m}_{28}\dot{i}_{28} + \dot{m}_{22}\dot{i}_{24} + \dot{m}_{17}\dot{i}_{19} + \dot{m}_{11}\dot{i}_{11} = \dot{m}_{12}\dot{i}_{12}$$
(7.61)

$$\dot{m}_{35} + \dot{m}_{32} + \dot{m}_{28} + \dot{m}_{22} + \dot{m}_{17} + \dot{m}_{11} = \dot{m}_{12} = 1 \tag{7.62}$$

$$\dot{m}_{22}(i_{22} - i_{23}) - \dot{m}_{11}(i_{11} - i_{10}) = 0 \tag{7.63}$$

$$\dot{m}_{17}(i_{17} - i_{18}) - \dot{m}_{11}(i_{10} - i_9) = 0$$
(7.64)

W tabeli 7.13 przedstawiono szczegółowe wyniki bilansu cieplnego prezentowanego układu dla stopnia eżekcji $\sigma_3 = 0,143$ oraz $\sigma_4 = 0,333$ dla których uzyskano najwyższą sprawność układu.

Płaszczyzna	P abs	t	i	ṁ
kontrolna	[barA]	[°C]	[kJ/kg]	[kg/s]
1	59,5	520	3470	1,0000
2	6,6	245	2943	0,0963
3	3	170	2803	0,0518
4	0,066	38	2300	0,8519
5	0,066	38	2300	0,0219
6	0,066	38	2300	0,8299
7	0,05	32	2290	0,8299
8	0,05	32	138	0,8299
9	10	32	138	0,8299
10	10	60	252,0	0,8299
11	10	80	335,8	0,8299
12	1	100	419,2	1,0000
13	70	100	419,2	1,0000
14	70	117,5	498,1	1,0000
15	70	140	593,5	1,0000
16=C1	3	170	2803	0,0267
17=L1	0,271	73,4	2633,5	0,0401
18	0,271	65	272,2	0,0401
19	10	65	272,2	0,0401
20=x1	0,066	38	2300	0,0134
21=c2	3	170	2803	0,0251
22=L2	0,611	124,4	2729,3	0,0293
23	0,611	85	356,0	0,0293
24	10	85	356,0	0,0293
25=x2	0,066	38	2300	0,0042
26=c3	6,6	245	2943	0,0308
27=l3	1,061	192,7	2860,8	0,0352
28	1,061	192,7	2860,8	0,0270
29	0,066	38	2300	0,0044
30=c4	6,6	245	2943	0,0246
31=L1	2,15	225,1	2920,7	0,0328
32	2,15	122,5	514,5	0,0328
33=x4	1,061	192,7	2860,8	0,0082
34	6,6	245	2943	0,0409
35	4,16	145	610,6	0,0409
		б1	0,5	00
Obliczenia v	vvkonane	б2	0,1	.67
dla)	б3	0,1	.43
stopni e	zekcji	б4	33	

Tab. 7.13 Parametry termodynamiczne czynnika roboczego w płaszczyznach kontrolnych turbinowego układu napędowego, wykorzystującego pięć wymienników ciepła z zastosowaniem czterech inżektorów parowych, w tym jednego, dwustopniowego zespołu inżektorowego CR5/4 W 2s1

$$\eta_{CR5/4W\,2s2} = \frac{\dot{m}_1(i_1 - i_4) - \dot{m}_2(i_2 - i_4) - \dot{m}_3(i_3 - i_4)}{\dot{m}_1(i_1 - i_{15})} = 0,37615 \tag{7.65}$$

natomiast w wyniku zastosowanej modyfikacji stopień regeneracji układu odpowiada:

$$\mathcal{E}_{CR5/4W\,2s2} = \frac{\eta_{CR5/4W\,2s2} - \eta_{CRref}}{\eta_{CRref}} = 0,83899\% \tag{7.66}$$

W tabeli 7.14 przedstawiono zbiorcze wyniki obliczeń poszczególnych układów w zależności od temperatur za wymiennikami ciepła oraz dobranego stopnia eżekcji G_3 oraz G_4 .

Tab. 7.14 Zestawienie wyników obliczeń bilansów cieplnych układu CR5/4 W 2s1 dla różnych stopni eżekcji inżektora trzeciego stopnia G₃ oraz inżektora 4czwartego stopnia G₄.

б₃	б4	t ₁₂	t ₁₄	$\eta_{CR5/4W2s1}$	$\epsilon_{CR5/4W2s1}$	l l _i	\dot{q}_2	q₁₃	\dot{q}_s
[-]	[-]	[°C]	[°C]	[-]	[%]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]
0,143	0,167	100	125,0	0,376113	0,82911	1081,89	270,67	138,10	47,00
0,143	0,200	100	123,7	0,376129	0,83345	1081,93	270,47	138,10	47,20
0,143	0,250	100	121,0	0,376141	0,83662	1081,97	270,32	138,10	47,34
0,143	0,333	100	117,5	0,376150	0,83899	1081,99	270,21	138,10	47,44
0,143	0,376	100	115,9	0,376149	0,83875	1081,99	270,22	138,10	47,43
0,143	0,429	100	114,2	0,376146	0,83813	1081,99	270,25	138,10	47,39

7.5.4. Złożony układ regeneracyjny z dodatkowym wymiennikiem ciepła w części wysokociśnieniowej oraz dwoma dwustopniowymi zespołami inżektorowymi CR5/4 W 2s2

Czwartym rozpatrywanym układem wykorzystującym pięć wymienników ciepła jest układ, którego schemat cieplno-przepływowy przedstawiono na rysunku 7.10. W układzie CR5/4 W 2s2, dodatkowy wymiennik ciepła umiejscowiono w części wysokociśnieniowej oraz zastosowano układ dwóch zespołów inżektorowych. Finalne podgrzanie wody do temperatury $t_{15} = 140$ °C, realizowane jest w podgrzewaczu wysokiego ciśnienia drugiego stopnia, zasilanym bezpośrednio z upustu pary 6,6 barA.

Rys. 7.10 Schemat cieplno-przepływowy modelu turbinowego układu napędowego, wykorzystującego pięć wymienników ciepła oraz z zastosowaniem dwóch dwustopniowych zespołów inżektorowych CR5/4 W 2s2

Model matematyczny opisano układem równań bilansowych 7.67 – 7.72 oraz 7.12, 7.13:

$$(\dot{m}_{36}(i_{35} - i_{36}) - \dot{m}_{15}(i_{15} - i_{14}) = 0$$
(7.67)

$$\dot{m}_{33}(i_{32} - i_{33}) - \dot{m}_{15}(i_{14} - i_{13}) = 0 \tag{7.68}$$

$$\dot{m}_{36}\dot{i}_{36} + \dot{m}_{33}\dot{i}_{33} + \dot{m}_{28}\dot{i}_{28} + \dot{m}_{24}\dot{i}_{26} + \dot{m}_{18}\dot{i}_{20} + \dot{m}_{11}\dot{i}_{11} = \dot{m}_{12}\dot{i}_{12}$$
(7.69)

$$\dot{m}_{36} + \dot{m}_{33} + \dot{m}_{29} + \dot{m}_{24} + \dot{m}_{18} + \dot{m}_{11} = \dot{m}_{12} = 1 \tag{7.70}$$

$$\dot{m}_{24}(i_{24} - i_{25}) - \dot{m}_{11}(i_{11} - i_{10}) = 0 \tag{7.71}$$

$$(\dot{m}_{18}(i_{18} - i_{19}) - \dot{m}_{11}(i_{10} - i_{9}) = 0$$
(7.72)

W tabeli 7.15 przedstawiono szczegółowe wyniki bilansu cieplnego prezentowanego układu dla stopnia eżekcji $\sigma_3 = 0.333$ oraz $\sigma_4 = 0.200$ dla którego uzyskano najwyższą sprawność układu.

Tab. 7.15 Parametry termodynamiczne czynnika roboczego w płaszczyznach kontrolnych turbinowego układu napędowego, wykorzystującego pięć wymienników ciepła oraz z zastosowaniem dwóch dwustopniowych zespołów inżektorowych CR5/4 W 2s2

Płaszczyzna	P abs	t	i	'n		
kontrolna	[barA]	[°C]	[kJ/kg]	[kg/s]		
1	59,5	520	3470	1,0000		
2	6,6	245	2943	0,0890		
3	3	170	2803	0,0605		
4	0,066	38	2300	0,8504		
5	0,066	38	2300	0,0205		
6	0,066	38	2300	0,8300		
7	0,05	32	2290	0,8300		
8	0,05	32	138	0,8300		
9	10	32	138	0,8300		
10	10	60	252,0	0,8300		
11	10	80	335,8	0,8300		
12	1,022	100	419,2	1,0000		
13	70	100	419,2	1,0000		
14	70	115,7	490,5	1,0000		
15	70	140	593,5	1,0000		
16=C1	3	170	2803	0,0312		
17=L1	0,271	73,4	2633,5	0,0468		
18	0,271	73,4	2633,5	0,0401		
19	0,271	65	272,2	0,0401		
20	10	65	272,2	0,0401		
21=x1	0,066	38	2300	0,0156		
22=c2	3	170	2803	0,0294		
23=L2	0,611	124,4	2729,3	0,0343		
24	0,611	124,4	2729,3	0,0293		
25	0,611	85	356,0	0,0293		
26	10	85	356,0	0,0293		
27=x2	0,066	38	2300	0,0049		
28=c3	6,6	245	2943	0,0201		
29=L3	1,239	205,5	2879,3	0,0268		
30=x3	0,271	73,4	2633,5	0,0067		
31=c4	6,6	245	2943	0,0248		
32=L4	2,032	217,4	2905,6	0,0297		
33	2,032	120,7	506,8	0,0297		
34=x4	0,611	124,4	2729,3	0,0050		
35	6,6	245	2943	0,0442		
36	4,16	145	610,6	0,0442		
		б1	0,500			
Obliczenia v	vvkonane	б2	0,1	.67		
dla	1	б3	0,333			
stopni e	zekcji	б4	200			

$$\eta_{CR5/4W\,2s2} = \frac{\dot{m}_1(i_1 - i_4) - \dot{m}_2(i_2 - i_4) - \dot{m}_3(i_3 - i_4)}{\dot{m}_1(i_1 - i_{15})} = 0,37626 \tag{7.73}$$

natomiast w wyniku zastosowanej modyfikacji stopień regeneracji układu odpowiada:

$$\mathcal{E}_{CR5/4W\,2s2} = \frac{\eta_{CR5/4W\,2s2} - \eta_{CRref}}{\eta_{CRref}} = 0,86793\% \tag{7.74}$$

W tabeli 7.16 przedstawiono zbiorcze wyniki obliczeń poszczególnych układów w zależności od temperatur za wymiennikami ciepła oraz dobranego stopnia eżekcji G_3 oraz G_4 .

Tab. 7.16 Zbiorcze wyniki obliczeń bilansów energetycznych układów CR5/4 W 2s2 w zależności od założonych stopni eżekcji ${\rm G}_3$ oraz ${\rm G}_4$

б₃	б4	t ₁₂	t ₁₄	$\eta_{CR5/4W2s2}$	$\mathcal{E}_{CR5/4W2s2}$	li		\dot{q}_3	\dot{q}_s
[-]	[-]	[°C]	[°C]	[-]	[%]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]
0,143	0,143	115	119,9	0,3760	0,803225	1081,61	259,60	153,01	43,14
0,167	0,143	112,5	119,9	0,37607	0,81878	1081,78	257,36	154,85	43,55
0,200	0,143	109	119,9	0,37613	0,83362	1081,94	255,01	156,86	43,89
0,250	0,143	105	119,9	0,37618	0,84748	1082,09	252,67	158,92	44,17
0,333	0,143	100	119,9	0,37624	0,86341	1082,26	250,49	160,66	44,20
0,333	0,167	100	118,2	0,37625	0,86685	1082,29	249,91	161,17	44,26
0,333	0,200	100	115,7	0,37626	0,86793	1082,30	249,73	161,32	44,28
0,333	0,250	100	112,4	0,37625	0,86489	1082,27	250,24	160,88	44,21

7.5.5. Analiza wyników

W tabeli 7.17 przedstawiono wyniki bilansów energetycznych poszczególnych układów z pięcioma wymiennikami ciepła (CR5/4), wariantów dla których uzyskano maksymalne sprawności.

Tab. 7.17 Zbiorcze wyniki układów CR5/4, dla wariantów o maksymalnej sprawności

	б₃	б4	li	$\eta_{CR5/4}$	$\mathcal{E}_{CR5/4}$	↓ <i>q</i> ₂	ġ₃	q₅	$\dot{q}_{2} + \dot{q}_{3}$
Układ	[-]	[-]	[kJ/kg]	[-]	[%]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]
CR5/4 N 2s1	0,167	0,500	1081,98	0,37615	0,83807	270,25	138,10	47,39	408,35
CR5/4 N 2s2	0,333	0,250	1082,27	0,37625	0,86498	247,51	164,19	44,05	411,70
CR5/4 W 2s1	0,143	0,333	1081,99	0,37615	0,83899	270,21	138,10	47,44	408,31
CR5/4 W 2s2	0,333	0,200	1082,30	0,37626	0,86793	249,73	161,32	44,28	411,05

Pomimo faktu, iż układy z jednym zespołem inżektorowym oraz dwoma inżektorami niezależnymi (2s1), odznaczają się wyższym stopniem utylizacji ciepła odpadowego pary odlotowej ($\dot{q}_s \approx 47,4 \, \text{kJ/kg}$), uzyskały niższe wartości pracy wewnętrznej turbiny, co przełożyło się na niższe wartości sprawności układu. Wynika to z faktu iż w rozwiązaniu tym

znacznie większy strumień ciepła zapotrzebowany przez układ podgrzewania regeneracyjnego pochodzi z upustu pary wyższego poziomu (6,6 barA), tym samym zmniejszając ilość energii możliwej do zamiany na pracę na kolejnych stopniach turbiny. Wersje układu 2s2 pomimo większego, o średnio 3 kJ na kilogram pary świeżej, zapotrzebowania na ciepło pobierane z upustów pary ($\Delta(\dot{q}_2 + \dot{q}_3)_{2s2} > \Delta(\dot{q}_2 + \dot{q}_3)_{2s1}$), dzięki większemu udziałowi ciepła pochodzącego z zaczepu niższego poziomu energetycznego (3,0 barA), uzyskały wyższe wartości pracy wewnętrznej, co bezpośrednio przełożyło się na wyższe wartości sprawności układu.

7.6. Podsumowanie wyników badań

Wyniki obliczeń dla zaprezentowanych koncepcji modyfikacji wskazują na możliwość przemodelowania szeroko dotychczas stosowanych układów regeneracyjnych wody zasilającej w celu poprawy ogólnej sprawności całej turbinowej siłowni parowej. Zaproponowana koncepcja modyfikacji układu polega na zastosowaniu inżektorów parowych w instalacjach pary zaczepowej, mającej na celu utylizację części strumienia energii odpadowej traconej w skraplaczu głównym. Uzyskane wyniki rozpatrywanych modyfikacji skonfrontowano z wynikami uzyskanymi dla układu referencyjnego, w charakterze którego przyjęto uproszczony model turbinowej siłowni parowej zbiornikowca *LNG*.

W tabeli 7.18 zestawiono zbiorcze wyniki bilansów energetycznych rozpatrywanych układów wraz z obliczonymi wielkościami:

- pracą wewnętrzną turbiny l_i
- względnym przyrostem pracy wewnętrznej turbiny odniesionym do układu referencyjnego Δl_i ,
- strumieniem ciepła doprowadzonego do układu (wartość stała),
- sprawnością entalpową układu η_{CRx} ,
- stopniem regeneracji układu \mathcal{E}_{CRx} ,
- względnym przyrostem stopnia regeneracji odniesionym do układu referencyjnego $\Delta \varepsilon_{CRx}$,
- strumieniem masy poszczególnych zaczepów pary \dot{m}_2 oraz \dot{m}_3
- strumieniami ciepła pary zaczepowej \dot{q}_2 oraz \dot{q}_3 ,
- sumarycznym strumieniem ciepła zapotrzebowanej pary upustowej $\dot{q}_2 + \dot{q}_3$,
- strumieniem masy pary kierowanej do skraplacza \dot{m}_s ,
- strumieniem ciepła oddanego w skraplaczu \dot{q}_s ,
- strumieniem masy pary zassanej przez inżektory parowe \dot{m}_o ,
- strumieniem ciepła odzyskanego niesionego przez parę zassaną \dot{q}_o .

	l _i	Δl _i	q _d	η_{CR}	E _{CR}	$\Delta \mathcal{E}_{CR}$	m₁₂	ġ₂	\dot{m}_3	\dot{q}_3	$\dot{q}_2 + \dot{q}_3$	\dot{m}_s		\dot{m}_o	
Układ	[kJ/kg]	[kJ/kg]	[kJ/kg]	[-]	[%]	[%]	[kg/kg] [-]	[kJ/kg]	[kg/kg] [-]	[kJ/kg]	[kJ/kg]	[kg/kg] [-]	[kJ/kg]	[kg/kg] [-]	[kJ/kg]
CRref	1072,99	ххх	2876,5	0,37302	ххх	ххх	0,09720	272,65	0,06861	182,85	455,50	0,83419	1803,51	xxx	xxx
CR3/1	1076,91	3,92	2876,5	0,37438	0,3656	0,3656	0,09815	275,30	0,05960	158,85	434,15	0,83231	1799,46	0,00993	21,48
CR3/2	1078,39	5,41	2876,5	0,37490	0,5033	0,1377	0,09585	268,86	0,05959	158,82	427,68	0,83161	1797,94	0,01295	27,99
CR4/3	1081,28	8,29	2876,5	0,37590	0,7726	0,2693	0,09744	273,33	0,05182	138,10	411,43	0,82995	1794,36	0,02078	44,93
CR4/3 2s2	1081,60	8,61	2876,5	0,37601	0,8024	0,0297	0,09304	260,98	0,05681	151,41	412,39	0,83011	1794,70	0,02004	43,32
CR4/3 2s1	1081,89	8,90	2876,5	0,37611	0,8299	0,0275	0,08797	246,76	0,06271	167,12	413,88	0,82996	1794,38	0,01936	41,85
CR5/4 N 2s1	1081,98	9,00	2876,5	0,37615	0,8381	0,0082	0,09635	270,25	0,05182	138,10	408,35	0,82991	1794,27	0,02192	47,39
CR5/4 W 2s1	1081,99	9,01	2876,5	0,37615	0,8390	0,0009	0,09633	270,21	0,05182	138,10	408,31	0,82991	1794,26	0,02194	47,44
CR5/4 N 2s2	1082,27	9,29	2876,5	0,37625	0,8650	0,0260	0,08824	247,51	0,06161	164,19	411,70	0,82978	1793,98	0,02038	44,05
CR5/4 W 2s2	1082,30	9,32	2876,5	0,37626	0,8679	0,0030	0,08903	249,73	0,06053	161,32	411,05	0,82995	1794,36	0,02048	44,28
CR5/4 W 2s2 opt	1082,73	9,74	2876,5	0,37641	0,90766	0,0397	0,08755	245,5844	0,06158	164,10	409,68	0,82974	1793,91	0,02113	45,68

Tab. 7.18 Zbiorcze wyniki obliczeń bilansów cieplnych rozpatrywanych układów dla wariantów o najwyższej sprawności

Jak wykazała przedstawiona analiza, zastosowanie pojedynczego inżektora parowego powoduje najwyższy przyrost sprawności wyrażony przyrostem stopniem regeneracji układu na poziomie $\Delta \mathcal{E}_{CR3/1} = 0,366\%$. Przyrost ten spowodowany jest utylizacją ciepła skraplania pary, dzięki czemu zmniejszeniu uległ zapotrzebowany strumień ciepła pary zaczepowej. Przełożyło się to także na wzrost pracy wewnętrznej turbiny o $\Delta l_{i CR3/1} = 3,92$ kJ/kg. Zastosowanie w tym układzie kolejnego inżektora parowego spowodowało pogłębienie utylizacji ciepła do poziomu $\Delta \dot{q}_{o CR}$ /2 = 27,99 kJ/kg pary świeżej. Co spowodowało przyrost pracy wewnętrznej względem układu referencyjnego do poziomu $\Delta l_{i CR}$ /2 = 5,41 kJ/kg względem układu regeneracyjnego. W podrozdziale 7.4 rozważono układ z dodatkowym wymiennikiem ciepła w zakresie temperatur do 80 °C. Zabieg ten pozwolił na zwiększenie strumienia ciepła odzyskanego do poziomu $\dot{q}_{o CR4/3}$ = 44,93kJ/kg.

Następnie w rozdziale 7.5 badań numerycznych rozważono układy z zastosowaniem kolejnego (piątego) wymiennika ciepła oraz zastosowanie dwustopniowych zespołów inżektorowych. W przypadku stosowania układów dwustopniowych jak wskazuje analiza zmianie ulegają proporcje ciepła pobieranego z poszczególnych zaczepów pary. Zmiana ta w przypadku układów 2s2 (z zastosowanie dwóch zespołów inżektorowych) powoduje zwiększenie udziału pary zaczepowej niższego poziomu energetycznego w ogólnym bilansie cieplnym zapotrzebowanej pary grzewczej dla regeneracyjnego układu wody zasilającej. Jednakże modyfikacje tego typu prowadzą do zwiększenia złożoności, układu regeneracyjnego podgrzewania wody kotłowej.

Stosowanie układów dwustopniowego sprężania umożliwia ich zastosowanie dla wyższych stopni podgrzania wody zasilającej. Jednakże przyrost sprawności w tym wariancie jest znacznie mniejszy, niż w przypadku zastosowania dla niższych ciśnień układów jednostopniowych. Należało by zatem, z ekonomicznego punktu widzenia, rozważyć zasadność stosowania układów z dwustopniowym sprężaniem.

Najwyższy poziom regeneracji, spośród rozpatrywanych modyfikacji, uzyskano dla układu CR5/4 W 2s2 który wyniósł $\mathcal{E}_{CR5/4W2s2} = 0,8679\%$. Wartość można dodatkowo zwiększyć do poziomu $\mathcal{E}_{CR5/4W2s2} = 0,9077\%$ poprzez odpowiedni dobór temperatur kondensatu na wyjściu z podgrzewaczy podciśnieniowych pierwszego i drugiego stopnia.

Jak wykazały obliczenia najważniejszym parametrem przy modelowaniu regeneracyjnego układu podgrzewania wody kotłowej jest wartość pracy wewnętrznej turbiny, która bezpośrednio przekłada się na wartość sprawności układu przy założeniu stałego zapotrzebowania na ciepło doprowadzone do układu (stała temperatura wody zasilającej kocioł oraz parametry pary świeżej). Na wartość pracy wewnętrznej turbiny wpływa wielkość sumarycznego ciepła pary zapotrzebowanej przez regeneracyjny układ wody zasilającej.

Analiza przedstawionych wyników badań wskazała, iż w celu uzyskania maksimum sprawność, możliwie jak największa część ciepła zapotrzebowanego przez układ regeneracyjnego podgrzewania wody musi pochodzić ze źródła o jak najniższym poziomie energetycznym, a więc w przypadku rozpatrywanych układów w pierwszej kolejności z całkowicie przepracowanej pary odlotowej turbiny, następnie odpowiednio z pary zaczepowej 3,0 barA oraz 6,6 barA. Najkorzystniejszym dla sprawności układu jest pobierane z upustów pary o niższym poziomie energetycznym, przy jednoczesnym maksymalnym wykorzystaniu przepracowanej już pary odlotowej z turbiny. Najwyższy przyrost sprawności uzyskano dla wymienników pracujących w zakresie temperatury podgrzania wody zasilającej kocioł do 80 °C, gdzie zastosować można wyższe stopnie eżekcji oraz parę upustową z niższych poziomów energetycznych. Stosowanie inżektorów dla wyższych temperatur powoduje stosunkowo niskie przyrosty stopnia regeneracji układu rzędu $\Delta \mathcal{E}_{CR} < 0,1\%$. Rozważyć jednak można zastosowanie inżektorów w systemach pomocniczych siłowni, gdzie dla procesów technologicznych wymagana jest para o niskich parametrach technicznych, takich jak para uszczelniająca, para grzewcza dla podciśnieniowych wyparowników (wytwarzanie wody pitnej/technicznej), podgrzewacze powietrza kotłowego oraz podgrzewaczach wody w systemach ciepłowniczych.

PODSUMOWANIE I WNIOSKI KOŃCOWE

Zasadność podjęcia tematu rozprawy wynika z rosnących wymagań dotyczących redukcji emisji związków szkodliwych oraz gazów cieplarnianych emitowanych przez układy napędowe statków morskich. Turbinowe układy napędowe, które jako jedyne umożliwiały wykorzystywanie par wrzącego ładunku do celów napędowych, znacząco straciły na atrakcyjności w wyniku szybkiego rozwoju nowych technologii, pozwalających na zasilanie tłokowych silników spalinowych gazem ziemnym. Współczesne, wysoce sprawne układy zbiornikowców LNG, wykorzystujące tłokowe silniki spalinowe całkowicie wyparły konwencjonalne turbinowe napędy parowe z pakietu zamówień stoczniowych. Pomimo szeregu zalet eksploatacyjnych, układy te na obecnym poziomie rozwoju nie są w stanie konkurować z siłowniami alternatywnymi, pod względem kryterium energetyczno-emisyjnego.

Rozprawę wykonano zgodnie z planem przedstawionym w rozdziale 2. obejmującym:

- analizę stanu faktycznego;
- przeprowadzenie eksperymentu eksploatacyjnego;
- identyfikację oraz ocenę jakościową źródeł energii odpadowej konwencjonalnego układu napędowego;
- opracowanie modelu układu regeneracyjnego zasilania wody kotłowej z zastosowaniem inżektorów parowych;
- badania numeryczne jedno oraz wielostopniowych regeneracyjnych układów z inżektorami parowymi.

W każdym rozdziale dokonano szczegółowego podsumowania rezultatów badań i analiz, formułując na ich podstawie wnioski utylitarne.

W podsumowaniu, poniżej, omówiono osiągnięcia poszczególnych rozdziałów oraz płynące z nich wnioski.

Rozdział 1. Stan rozwoju układów napędowych zbiornikowców LNG

- Analiza rozwiązań wskazała na szereg zalet turbinowych układów napędowych, związanych z kosztami *CAPEX* oraz *OPEX*, takich jak niezawodność oraz prostotę układu zasilania gazem.
- Wykazano, iż konwencjonalne układy turbinowe ustępują siłowniom z tłokowymi silnikami spalinowymi, pod względem kryterium ekonomiczno-emisyjnego, ze względu na znacznie niższą sprawność energetyczną.
- Trend zamówień stoczniowych zbiornikowców LNG, wskazuje iż w najbliższej przyszłości dwusuwowe silniki spalinowe z możliwością zasilania paliwem gazowym stanowić będą podstawowy układ napędowy zbiornikowców, przy jednoczesnym skłanianiu się ku niskociśnieniowym układom zasilania gazem (gaz dostarczany do komory spalania we wczesnym etapie sprężania), zastępując układy wysokociśnieniowe (wtrysk gazu w końcowym etapie sprężania).
- Prace rozwojowe głównych producentów układów turbinowych, w głównej mierze skupiają się na podnoszeniu parametrów stanu górnego źródła ciepła realizowanego

obiegu oraz zastosowaniu przegrzewu wtórnego pary (zwiększenie strumienia ciepła doprowadzonego do obiegu) oraz minimalizowaniu strat wewnętrznych poprzez doskonalenie ich konstrukcji.

Współczesne kierunki badań praktycznie pomijają jakiekolwiek możliwości odzysku ciepła skraplania, stanowiącego największego źródła dyssypacji energii w siłowni parowej, co wypełnia niniejsza rozprawa.

Rozdział 2. Sformułowanie problemu badawczego

W rozdziale drugim przedstawiono genezę problemu badawczego, jako podsumowanie obserwacji oraz wniosków wyprowadzonych na podstawie analiz z rozdziału pierwszego. W rozdziale tym zawarte jest uzasadnieniem podjęcia tematu oraz sprecyzowanie jego niszy naukowej. Przedstawiono cel główny, poznawczy oraz cele utylitarne i cząstkowe. Wypracowano wnioski do sformułowania hipotezy, zdefiniowanej w rozdziale czwartym na podstawie rezultatów przeprowadzonego eksploatacyjnego eksperymentu badawczego (przedstawionego w rozdziale 3).

Rozdział 3. Identyfikacja źródeł energii odpadowej konwencjonalnego układu parowego

- Dokonano oceny jakościowej dwóch głównych źródeł energii odpadowej (spalin kotłowych oraz strat skraplania pary odlotowej).
- Wskazano na duży potencjał energetyczny strumienia spalin kotłowych ze względu na ich stosunkowo wysoką temperaturę.
- Przedstawiono ograniczenia w wykorzystaniu spalin kotłowych do głębszej utylizacji. wynikających z kwasowego punktu rosy spalin, wskazując na możliwości wykorzystania tego źródła przy zastosowaniu paliw nisko siarkowych lub *LNG*, sugerując konieczność prac rozwojowych w kierunku bezpiecznego oraz stabilnego zasilania kotłów parowych paliwem gazowym, przy niskich oraz zmiennych obciążeniach układu napędowego (np. podczas manewrów).
- Analiza wykazała wysoki potencjał energetyczny strumienia ciepła skraplania pary odlotowej. Strumień ten jednak ze względu na niską temperaturę oraz ciśnienie (niski poziom energetyczny), nie może być wykorzystany w powierzchniowych wymiennikach ciepła;
- Zaproponowano możliwość podwyższenia poziomu energetycznego strumienia pary przepracowanej na drodze mieszania się strumieni pary w urządzeniu inżektorowym (podwyższenia ciśnienia pary), co umożliwi wykorzystanie części strumienia pary odlotowej w układzie regeneracyjnego podgrzewania wody kotłowej.

Rozdział 4. Obliczenia wstępne turbinowego obiegu parowego z zastosowaniem inżektora parowego

- Obliczenia oparto na hipotezie, iż zastosowanie inżektora parowego spowoduje zmniejszenie zapotrzebowania na parę upustową, odzyskując tym samym większą ilość ciepła skraplania pary w procesie podgrzewania regeneracyjnego wody kotłowej.
- Wykazano, iż dla każdego dodatniego stopnia eżekcji ($\sigma > 0$), przy zachowaniu tych samych parametrów obiegu (tj. pary świeżej oraz pary zaczepowej dla

regeneracyjnego podgrzewania wody kotłowej) uzyskuje się poprawę sprawności cieplnej obiegu (stopień regeneracji układu dla proponowanej modyfikacji $\varepsilon > 0$).

 Proponowane rozwiązanie w celu uzyskania oczekiwanych parametrów pary odlotowej z inżektora, wymaga stosunkowo wysokich ciśnieni pary zasilającej inżektor (pary upustowej z turbiny). Ten sam stopień podgrzania wody kotłowej dla układu referencyjnego może być zrealizowany przy wykorzystaniu pary zaczepowej niższego poziomu energetycznego.

Rozdział 5. Dobór parametrów pracy inżektora parowego

- Wskazano, iż zwiększanie stopnia eżekcji (co dodatnio wpływa na stopień regeneracji układu), przekłada się na obniżenie ciśnienia pary opuszczającej inżektor parowy, co skutkuje obniżeniem możliwej do uzyskania maksymalnej temperatury wody zasilającej kocioł.
- Stosowanie pary zaczepowej o wyższym ciśnieniu umożliwia uzyskanie wyższych parametrów stanu pary opuszczającej inżektor parowy, bądź zastosowanie wyższych stopni eżekcji. Zastosowanie wyższych parametrów pary zaczepowej zmniejsza jednak możliwą do uzyskania wartość pracy wewnętrznej turbiny, negatywnie wpływając na sprawność obiegu.
- Biorąc pod uwagę powyższe, wskazano na konieczność przeprowadzenia badań numerycznych w celu wyznaczenia najlepszych parametrów pracy układu, ze względu na stopień regeneracji.

Rozdział 6. Badania numeryczne układów z zastosowaniem inżektorów parowych do regeneracyjnego podgrzewania wody zasilającej kocioł parowy

- Wyznaczono zakresy temperatur dla układów wykorzystujących poszczególne wymienniki ciepła zasilane parą odlotową z inżektorów.
- Ze względu na ograniczenia wynikające z możliwych do uzyskania parametrów pary odlotowej, przeanalizowano rozwiązania z zastosowaniem dwustopniowych zespołów inżektorowych w celu uzyskania wyższych parametrów pary opuszczającej inżektory.
- W oparciu o przeprowadzoną analizę wypracowano ogólne zalecenia projektowe dla regeneracyjnych układów parowych z zastosowaniem inżektorów.
- Wskazano dalsze kierunki badań, które wykraczają poza przyjęte ramy pracy, a mianowicie zastosowanie schładzania pary zasysanej przez inżektor drugiego stopnia oraz schładzanie pary zasilającej inżektory.

Rozdział 7. Proponowane rozwiązania złożonego turbinowego układu parowego z zastosowaniem inżektorów parowych odzyskujących ciepło skraplania pary wylotowej

- Przeprowadzone badania numeryczne potwierdziły możliwość podwyższenia sprawności entalpowej realizowanego obiegu poprzez zastosowanie proponowanych rozwiązań.
- Wartości uzyskanych stopień regeneracji w stosunku do układu referencyjnego nie przekroczyły wartości 1%, zwiększając przy tym stopień złożoności układu. Należy zatem rozważyć opłacalność proponowanego rozwiązania pod kątem kosztów inwestycyjnych oraz eksploatacyjnych.

Hipoteza pracy zakładała że:

"zastosowanie inżektora parowego spowoduje zmniejszenie zapotrzebowania na parę upustową, odzyskując tym samym większą ilość ciepła skraplania pary do podgrzewania regeneracyjnego wody kotłowej".

Postawioną hipotezę udowodniono zarówno wstępnymi obliczeniami przedstawionymi w rozdziale czwartym, jak również wielowariantową analizą poszczególnych układów, jedno i dwustopniowych, w rozdziale szóstym, oraz badaniami numerycznymi proponowanych układów w rozdziale siódmym. Przedstawione w rozdziale drugim cele zostały osiągnięte w toku przeprowadzonych badań.

WNIOSKI:

- Przedłożona w rozprawie koncepcja modyfikacji, poprzez implementacje inżektorów parowych oraz efektywna gospodarka parą zaczepową (z właściwych poziomów energetycznych), w układzie regeneracyjnego podgrzewania wody, spowoduje wzrost sprawności cieplnej złożonego obiegu parowego.
- Zastosowana modyfikacja przy utrzymaniu stałego strumienia ciepła doprowadzonego do układu (stała temperatura wody zasilającej na dolocie do kotła), spowoduje wzrost pracy wewnętrznej turbiny l_i. Praca wewnętrzna turbiny, jak wykazała analiza, jest najważniejszym parametrem determinującym sprawność modelowanego układu, dlatego też, każda modyfikacja w sposób bezpośredni lub pośredni powinna zmierzać do maksymalizacji jej wartości.
- Przyrosty sprawności cieplnej w funkcji stopnia regeneracji, rozpatrzonych układów mieszczą się w przedziale 1%, przy równoczesnym zwiększeniu złożoności obiegu.

W przyszłych badaniach:

- Ze względu na stosunkowo niskie wartości uzyskanych stopni regeneracji układu, należało by przeprowadzić analizę ekonomiczną, pod kątem opłacalności stosowania tego typu rozwiązań, uwzględniając koszty inwestycyjne, jak również koszty związane z eksploatacją tych układów.
- W przyszłych badaniach wskazanym jest rozważenie proponowanych rozwiązań w systemach pomocniczych siłowni parowych takich jak, podciśnieniowe wyparowniki, podgrzewacze powietrza kotłów głównych, okrętowe instalacje grzewcze, jak również przemysłowe układy ciepłownicze. Taki kierunek zastosowań/badań sugerują najwyższe wartości przyrostów sprawności uzyskanych w zakresie temperatur do 80 °C.

Na podstawie syntezy przedstawionych wniosków, za autorski wkład w rozwój dyscypliny budowa i eksploatacja maszyn, uznać można przedstawioną w pracy koncepcję podwyższenia poziomu energetycznego pary odlotowej z turbiny głównej oraz efektywnego wykorzystania jej ciepła skraplania w procesie podgrzewania wody zasilającej kocioł.

Do wkładu tego zaliczyć również można, proponowane rozwiązanie opisane w modelu matematycznym regeneracyjnego układu podgrzewania wody kotłowej z zastosowaniem inżektorów parowych, dla turbinowej siłowni parowej zbiornikowca *LNG*.

LITERATURA

- 1. Adamkiewicz A.: Technological development possibilities of heat turbines in LNG carrier power systems. In: Steam Turbines: Theory. Construction. Operation., Wydawnictwo Politechniki Śląskiej, Gliwice 2016.
- 2. Adamkiewicz A, Behrendt C: Ocena porównawcza silników dwupaliwowych o zapłonie samoczynnym w układach napędowych zbiornikowców LNG, Nafta-Gaz 2012, nr 1, 2012.
- 3. Adamkiewicz A, Behrendt C: Układy energetyczne statków typu LNG Nafta-Gaz 2012, nr 10, 2012.
- 4. Adamkiewicz A., Grzesiak S.: Ewolucja efektywności energetycznej turbinowych napędów parowych współczesnych zbiornikowców LNG, Rynek Energi 130/9, 2017.
- 5. Adamkiewicz A., Grzesiak S.: Identification of waste heat energy sources of a conventional steam propulsion plant of an LNG carrier, Archives of Thermodynamics, Vol. 40 No.3, 2019.
- 6. Adamkiewicz A., Grzesiak S.: Koncepcja zwiększenia stopnia regeneracji turbinowego obiegu parowego., Zeszyty Naukowe Akademi Morskiej w Gdyni, 2018.
- 7. Adamkiewicz A., Michalski R., Zeńczak W.: Wybrane problemy technologii konwersji energii w okrętowych systemach energetycznych, Wydawnictwo Kaprint, Lublin 2012.
- 8. Adamkiewicz A, Przybyła M.: Zastosowanie odzysku energii odpadowej w układzie energetycznym zbiornikowca LNG z ponownym skraplaniem gazu, Rynek Energii nr 5, 2015.
- 9. Alan N.: Campion Marine Technical Notes, Imarest, no 1/12, May 2012.
- Balcerski A.: Siłownie Okrętowe. Podstawy termodynamiki, silniki i napędy główne, urządzenia pomocnicze, instalacje., Wydawnictwo Politechniki Gdańskiej, Gdańsk, 1986.
- 11. Barsi D., Bono A., Satta F., Zunino P.: Gas turbine prime movers fuelled by LNG as a future alternative for sustainable power in marine propulsion: current emission policy assessment and exhaust quality, Web of Conferences, 2019.
- 12. Behrendt C., Adamkiewicz A: Ocena pracy układów energetycznych zbiornikowców LNG przy zasilaniu naturalnie odparowanym gazem ładunkowym. Rynek Energii nr 3 2012.
- Behrendt C.: Wpływ temperatury wody zasilającej na eksploatację okrętowych kotłów pomocniczych, Zeszyty naukowe Akademii Morskiej w Szczecinie, nr 5(77), Szczecin 2005.
- 14. Bernad A.: Analiza termoekonomiczna wybranych układów gazowo-parowych, Wybrane problemy energetyki i techniki cieplno-przepływowej I, Archiwum Instytutu Techniki Cieplnej Vol. 2, Gliwice, 2016.
- 15. Bukurov M., and Bikic S., Prica M.,: The Efficiency Rate of a Steam-Water Injector, Acta Polytechnica Hungarica Vol. 9, No. 5, 2012.
- 16. Chang D, Rhee T, Nam K, Lee S, Kwak B, Ha J. Economic evaluation of propulsion systems for LNG carriers: a comparative life cycle cost approach, Hydrocarb, Asia 2008.

- 17. Cheenkachorn K., Poompipatpong C., Ho C.: Performance and emissions of a heavyduty diesel engine fuelled with diesel and LNG (liquid natural gas), Energy, 2013.
- 18. Chmielniak T.: Turbiny cieplne. Podstawy teoretyczne. Wydawnictwo Politechniki Śląskiej, Gliwice 1998.
- 19. Chmielniak T: Obiegi termodynamiczne turbin cieplnych, Ossolineum, Wrocław 1988.
- 20. Coats R.: Marine Engineering practice Vol 1 P.2 Marine Steam Turbines, Marine Management, Londyn 1981.
- 21. Costs and benefits of LNG as ship fuel for container vessels Key results from a GL and MAN joint study, Germanisher Lloyd, 2012.
- 22. Daejun C., Taejin R., Kiil N., Kwangpil C., Donghun L., Samheon J.: A study on availability and safety of new propulsion systems for LNG carriers, Reliability Engineering & System Safety, Volume 93, Issue 12, Dec 2008.
- 23. Donald K.: Marine Steam Turbines, Marine Media Management, Londyn 1977.
- 24. Drożyński Z., Konorski A.: Algorytm wyznaczania parametrów termodynamicznych urządzeń eżektorowych, Instytut Maszyn Przepływowych PAN, Gdańsk 2018.
- 25. Dzida M., Mucharski J.: On the possible increasing of efficiency of ship power plant with the system combined of marine diesel engine, gas turbine and steam turbine in case of main engine cooperation with the gas turbine fed in parallel and the steam turbine. Polish Maritime Research 2 (60), 16, 2009.
- 26. Ellington L., McAndrews G., AHarsema-Mensonides A., Tanwar R.: Gas Turbine Propulsion for LNG Transports, ASME Turbo Expo 2006: Power for Land, Sea, and Air, 2006.
- 27. Everett B. Woodruff, Herbert B. Lammers, Thomas F. Lammers: Steam Plant Operation, McGraw Hill Professional, 2011.
- 28. Gawron, M. Przybyła, K. Lipnicki, Z.: Warunki przepływu spalin w kominie a kwasowy punkt rosy; Zeszyty naukowe Uniwersytetu Zielonogórskiego nr 144, Zielona Góra 2011.
- 29. Giernalczyk M., Górski Z.: Siłownie okrętowe Cz. 1 Podstawy napędu i energetyki okrętowej, Wydawnictwo Akademii Morskiej w Gdyni, Gdynia 2016.
- 30. Giernalczyk M., Górski Z.: Siłownie okrętowe Cz. 2 Instalacje, Wydawnictwo Akademii Morskiej w Gdyni, Gdynia 2016.
- 31. Głomski P., Michalski R.: Problems with determination of evaporation rate and properties of boil-off gas on board LNG carriers. Jurnal of Polish CIMAC, no 1, Vol 6, 2011.
- 32. Goliński A., Troskolański T.: Strumienice Teoria i Konstrukcja, Wydawnictwo Naukowo Techniczne, Warszawa 1979.
- 33. Gomez J., Gomez M. Garcia R., Catoira A.: On Board LNG Reliquefication technology: a comparative study, Polish Maritime Research, No 1 (81) Vol 21, 2014.
- 34. Górski Z. Perepeczko A. Okrętowe kotły parowe, Wydawnictwo Akademii Morskiej w Gdyni, Gdynia, 2013.
- 35. Gryboś R.: Regeneracja ciepła w siłowni z turbiną bezupustową, Zeszyty Naukowe Politechniki Śląskiej Issue 1, No 5, Gliwice 1956.

- 36. Grzesiak S, Adamkiewicz A. Application of a Two-Stage Steam Jet Injector Unit for Latent Heat Recovery of a Marine Steam Turbine Propulsion Plant, *Applied Sciences*, 11(12), 2021.
- 37. Grzesiak S. Alternative Propulsion Plants for Modern LNG Carriers, New Trends in Production Engineering, 2018.
- 38. Grzesiak S., Adamkiewicz A.: Application of Steam Jet Injector for Latent Heat Recovery of Marine Steam Turbine Propulsion Plant, Bew Trends in Production Engineering 1, 1, 2018.
- 39. Gundlach W.: Podstawy maszyn przepływowych i ich systemów energetycznych, Wydawnictwo Naukowo-Techniczne, Warszawa, 2008.
- 40. Haglind F.: A review on the use of gas and steam turbine combined cycles as prime movers for large ships, Part III: fuels and emissions, Energy Convers Manag, 2008.
- 41. Hegazy A.: Possible Waste Heat Recovery in the Condenser of a Regenerative Steam Cycle, Journal of Thermal Science and Technology Vol 2, No 1, 2007.
- 42. Hiramas S., Kuwahata K., Hirota K., Ishida T., Tsukamoto H., Ishibashi K.: SAYARINGO STaGE – Next Generation MOSS-type LNG Carrier With Hybride Propulsion Plant, MHI Technical Review, Vol.53 No2, Jun 2016.
- 43. Hobbler T.: Ruch ciepła i wymienniki, Państwowe Wydawnictwa Techniczne, Warszawa, 1959.
- 44. Huan T., H ongjun F., Wei L., Guoqiang Z.: Options and Evaluations on Propulsion Systems of LNG Carriers, Proppulsion System IntechOpen, 2019.
- 45. Hyeonwon J.: Calculation of Boil-off gas (BOG) generation of KC-1 membrane LNG tank with high density rigid polyurethane foam by numerical analysis, Polish Maritime Research, no 1, 2017.
- 46. IMO: Studies on the feasibility and use of LNG as a fuel for shipping, IMO , London 2016.
- 47. Ito M., Hiraoka K., Matsumoto S., Tsumura K.: Development of high efficiency marine propulsion plant (UST), MHI technical Review, Vol 44 No 3, 2007.
- 48. Janke T.: Paten nr 33648. Sposób wykorzystania ciepła pary odlotowej turbiny, pracującej z kondensacją, do ogrzewnictwa i podgrzewania wody zasilającej kotły, Udizelon z mocą od dnia 22.10.1947.
- 49. Jankowski D.: Temperatura wody chłodzącej w skraplaczu jako czynnik wpływający na ilość produkowanej mocy elektrycznej w bloku parowym 360 MW, Regionalna Izba Gospodarcza Pomorza - INNOWROTA - Współpraca nauki i biznesu przyszłością Pomorza - Artykuły Stażystów, Politechnika Gdańska, 2012.
- 50. Kehlhofer R.: Combined Cycle Gas &Steam Turbine Power Plants, PennWell Publishing Company, 1997.
- 51. Komal C., Lee S.: Reliability analysis of dual-fuel steam turbine propulsion system in LNG carriers considering data uncertainty, J Nat Gas Sci Eng, 2015.
- 52. Korobitsyn M.: New and advanced energy conversion technologies. Analysis of cogeneration, combined and integrated cycles, Febodruk BV, Enschede 1998.
- 53. Kosowski K.: Ship Turbine Power Plants, Fundamentals of Thermodynamical Cycles, Fundation for the Promotion of Maritime Industry, Gdańsk 2005.
- 54. Kowalski A. Krzyżanowski J.: Okrętowe siłownie parowe, Wydawnictwo Uczelniane WSM, Gdynia 1995.
- 55. Kowalski A., Krzyżanowski J.: Teoria Okrętowych Kotłów Parowych, Wydawnictwo Uczelniane WSM w Gdyni, Gdynia 1993.
- 56. Lion S., Taccani R., Vlaskos I., Kaiktsis L.: Thermodynamic analysis of waste heat recovery using Organic Rankine Cycle (ORC) for a two-stroke low speed marine Diesel engine in IMO Tier II and Tier III operation, Energy, 2019.
- 57. Macchi E., Astolffi M.: Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications, WoodHead Publishing, 2016.
- 58. Majewski J.: "Metrologia Eksploatacyjna Statku część III Urządzenia, systemy, pomiary" Wydawnictwo uczelniane WSM Gdynia, Gdynia 1992.
- 59. Marecki J.: Podstawy Przemian Energetycznych, Wydawnictwo Naukowo-Techniczne, Warszawa 2018.
- 60. Masamoto K., Sato K., Nishikawa H., Imai T.: Combine Remarkable Experienced Skill with Latest Technology, Kawasaki Technical Review No. 166 KHI Jan 2008.
- 61. Matsumoto K., Yamase Y., Mori H., Mizutani S.: Kawasaki URA Reheat Turbine Plant for LNG Carriers, Kawasaki Technical Review, No. 166, Jan 2008.
- 62. Matyszczak M. Nowe rozwiązania techniczne zastosowania w systemach ładunkowy statków do przewozu skroplonego gazu ziemnego, Nafta-Gaz 2012 nr 2, 2012.
- 63. McGuire, White: Liquefied Gas Handling Priciples On Ships and In Terminals, Witherby & Co Ltd, London 2000.
- 64. Michałoswski S., Wańkowicz K.: Termodynamika procesowa, Wydawnictwo Naukowo-Techniczne, Warszawa, 1999.
- 65. Michalski R.: Ocena termodynamiczna okrętowych systemów utylizacji energii odpadowej. EXPLO-SHIP 2002, Zeszyty Naukowe Wyższej szkoły Morskiej w Szczecinie nr 66, Szczecin, 2002.
- 66. Międzynarodowa Konwencja o zapobieganiu zanieczyszczaniu morza przez statki, sporządzona w Londynie dnia 2 listopada 1973 r. wraz z załącznikami.
- 67. Miller A. Teoria Maszyn Wirnikowych, Wydawnictwo Politechniki Warszawskiej, Warszawa 1982.
- 68. Nakase T., Uchida H., Yamaguchi D., Itoh T.: Challenge to 12MPaG Steam Pressure, Kawasaki Technical Review No. 166 KHI, Jan 2008.
- 69. Nikiel T.: Turbiny Parowe, Wydawnictwo Naukowo-Techniczne, Warszawa, 1980.
- 70. Norris A.: Marine Engineering practice Vol 1 P.2 Prime movers for generation of electricity steam turbines, Marine Management, Londyn 1995.
- 71. Ohira H., Hiramatsu S., Matsumoto S., Fujino Y.: Key technologies for Mitsubishi LNG Carrier, MHI technical Review, Vol 44 No 3, 2007.
- 72. Orłowski P., Dobrzański W., Szwarc E.: Kotły Parowe konstrukcje i obliczenia "Wydawnictwo Naukowo Techniczne; Warszawa 1979.
- 73. Patel D.: Improve steam turbine efficiency by use of reheat Rankine cycle, International Journal of Engineering Sciences & Research Technology, 2015.
- 74. Patel M., Nath N.: Improve steam turbine efficiency., Hydrocarb. Process. 79, 2000.
- 75. Perepeczko A., Cwilewicz R.: Okrętowe turbiny parowe, Wydawnictwo Akademii Morskiej w Gdyni, Gdynia 2014.

- 76. Perycz S.: Turbiny parowe i gazowe" Ossolineum Wrocław, 1992.
- 77. Piotrowski I., Witkowski K.: Okrętowe silniki spalinowe, Wydawnictwo TRADEMAR, wydanie IIIa, Gdynia 2003.
- 78. PN-EN 12952 Kotły wodnorurowe i urządzenia pomocnicze.
- 79. PN-EN 12953 Kotły płomienicowo-płomieniówkowe.
- 80. Przepisy klasyfikacji i budowy statków morskich: 2007 Cz. 7 Silniki, mechanizmy, kotły i zbiorniki ciśnieniowe, 2007.
- 81. Pudlik W.: Termodynamika, Wydawnictwo Politechniki Gdańskiej, Gdańsk 2011.
- 82. Rech S., Zamdarin S., Lazzaretto A., Frangopoulos C.: Design and off-design models of single and two-stage ORC systems on board a LNG carrier for the search of the optimal performance and control strategy, Applied Energy 204, 2017.
- 83. Rozmarynowska M. : LNG jako alternatywne paliwo dla statków aspekty techniczne, ekologiczne, ekonomiczne i regulacyjne, Logistyka 5/2012.
- 84. Ruijie W., Guohua K., Lei Z., Shucheng W., Jingquan Z.,: Experimental Investigation of a 300 kW Organic Rankine Cycle Unit with Radial Turbine for Low-Grade Waste Heat Recovery, Entropy, 2019.
- 85. Scope Kawasaki Heavy Industries, Quartely Newsletter no. 94, Jan 2013.
- 86. SIGTO: LNG shipping knowledge: underpinning knowledge to the SIGTO 2005 standards Volume 1-6, Witherby Seamanship International, Livingston 2008.
- Stechman, A.: Wybrane zagadnienia korozji kwasowej przewodów kominowych obliczanie kwasowego punktu rosy spalin. Prace Naukowe Instytutu Budownictwa Politechniki Wrocławskiej, Wrocław, 2008.
- 88. Szargut J. Termodynamika Techniczna, Wydawnictwo Plitechniki Śląskiej, Gliwice 2011.
- 89. Szargut J., Ziębik A.: Podstawy energetyki cieplnej, PWN, Warszawa 1998.
- 90. Szargut J.: Analiza termodynamiczna i ekonomiczna w energetyce przemysłowej, WNT, Warszawa 1991.
- 91. Szargut J.: Egzergia Poradnik obliczania i stosowania, Wydawnictwo Politechniki Śląskiej, Gliwice, 2007.
- 92. Szargut J.: Przemysłowa energia odpadowa. Zasady wykorzystania. Urządzenia. Wydawnictwo Naukowo-Techniczne, Warszawa 1993.
- 93. Tanuma T.: Advances in Steam Turbines for Modern Power Plants, Woodhead Publishing, 2017.
- 94. Trela M. and Kwidzinski R. and Gluch J.: Analysis of application of feed water injector heaters to steam power plants, Polish Maritime Research, Volume 16 Special Issue:1, 2009.
- 95. Tuliszka E.: Turbiny cieplne. Zagadnienia termodynamiczne i przepływowe Wydawnictwo Naukowo-Techniczne, Warszawa, 1973.
- 96. Urbański P. Dwa Wieki Napędu Mechanicznego Statków, Marpress, Gdańsk 1997.
- 97. Verschoor M., Brouwer E.: Description of the SMR cycle, which combines fluid elements of steam and organic Rankine cycle, Energy, 1995.
- 98. Wiggins E.: COGAS Propulsion for LNG Ships, Journal of Marine Science and Application Volumr 10, Issue2, Jun 2011.

- 99. Wojnar W.: Przegrzewacze pary kotłów energetycznych konstrukcja, obliczenia i eksploatacja, Wydawnictwo Politechniki Śląskiej, Gliwice, 2019.
- 100. Woolcott T. W. V.: Liquefied Petroleum Gas Tanker Practice Brown, Son & Ferguson, Nautical Publishers, Glasgow 1987.
- 101. Yuki T., Uchida I., Amano M.: Reheat Boiler for Marine Reheat Cycle Plant Journal of the JIME, Vol. 42 No. 6, 2007.
- 102. Zaporowski B.: Energy effectiveness and economic performance of gas-steam combined heat and power plants fired with natural gas, Acta Energetica nr 1, 2016.

Źródła internetowe:

- 103. http://global.kawasaki.com/ dostęp grudzień 2016.
- 104. http://worldmaritimenews.com/, dostęp grudzień 2016.
- 105. http://www.alfa-tech.com.pl/stale-konstrukcyjne-stopowe-stal-do-pracy-przy-podwyzszonych-temperaturach, dostęp styczeń 2018.
- 106. http://www.aukevisser.nl/supertankers/gas-1/, dostęp grudzień 2016.
- 107. http://www.corporate.man.eu, dostęp kwiecień 2017.
- 108. http://www.marine.man.eu, dostęp listopad 2016.
- 109. http://www.mhi-global.com, dostęp grudzień 2016.
- 110. https://www.wartsila.com, dostęp styczeń 2020.
- 111. IGU World LNG Report 2017 Edition- http://www.igu.org/, dostęp maj 2017.
- 112. IGU World LNG Report 2019 Edition- http://www.igu.org/, dostęp grudzień 2019.
- 113. IGU World News LNG Report 2016 http://www.igu.org/, dostęp grudzień 2016.
- 114. K-Line newsletter 8, August 2018, https://www.kline.com/, dostęp listopad 2021.
- 115. Marine Propultion oct/nov 2008, mpropulsion.com/, dostęp grudzień 2016.
- 116. ME-GI Dual Fuel MAN B&W Engines, A Technical, Operational and Cost Effective Solution for Ships Fuelled by Gas, MAN B&W technical papers https://marine.mandieselturbo.com, dostęp 2020.
- 117. Wärtsilä Corporation, Wärtsilä and Turboden sign agreement to launch Wärtsilä Marine ECC, Trade press release, https://www.wartsila.com/media/news/09-09-2010-wartsila-and-turboden-sign-agreement-to-launch-wartsila-marine-ecc, dostęp styczeń 2020.
- 118. www.lr.org, dostęp styczeń 2018.

Dokumentacja techniczno-ruchowa statków:

- 119. S/S British Trader (Zbiornikowiec LNG o nośności 138 tyś m³ LNG CST rok budowy 2003)
- Piping diagram of engine room
- Heat balance for cooling water
- Steam balance for auxillart system
- On board test procedure with results for engine room auxillary machinery
- On board test procedure with results for main boiler
- On board test procedure with results for engine room for main steam turbine
- Main propultion turbine (Kawassaki UA-400) vol 1,2
- Main propulsion turbine instruction manual voal 1-3
- Steam turbine for electric generator (Shinko RG92-2)
- Feed water pump & steam turbine (Coffin Turbo DEB-16)
- Main Boiler machinery part (Kawasaki UME 65/50) Vol 1-2
- Main Boiler automation part (Kawasaki UME 65/50) Vol 1-2

- Instruction for operation & maintenace (Main boiler) (Kawasaki UME 65/50) Vol 1-3
- Steam to steam generator (Dongwa BKU)
- Electric load analysis
- Vessel particulars
- 120. S/S North West Shearwater (Zbiornikowiec LNG o nośności 120 tyś m³ LNG CST rok budowy 1991)
- Vessel particulars
- Main propulsion turbine instruction (Mitsubishi
- Steam turbine for electric generator (Shinko RG92)
- Instruction manual for cargo handling
- Northwest Shearwater Machinery manual
- Main Boiler (Mitsui FW type MSD40 ER)
- 121. M/V British Emerald (Zbiornikowiec LNG o nośności 155 tyś m³ LNG DFDE rok budowy 2007)
- Electric load analysis
- Vessel particulars
- Result of sea trial
- Piping system diagram in engine room
- Instruction manual for 9L50DF for main diesel generator engine
- Instruction manual for 12V50DF for main diesel generator engine
- Instruction manual dor propulsion converter & excitation (ConverTeam)
- Integrated automation system instruction manual (Vol. 1-4)
- Propulsion remote control system for electric proplsion motor
- Machinery and cargo operating manual
- Boil-Off rate calculation & measurement

122. M/V British Partner (Zbiornikowiec LNG o nośności 168 tyś m³ LNG – DF SSD – MEGI rok budowy 2018)

- Vessel particulars
- Result of sea trial
- HP BOG Compressor (Burckhardt Laby-GI 5LP250-5B)
- Main Engine instruction manual (MAN 5G70ME-GI)
- Diesel Generator Engine manual (Wartsila 9L34DF)
- Machinery and cargo operating manual
- Boil-Off rate calculation & measurement
- Electric load analysis
- Cargo containment system biulding principle

STRESZCZENIE

W rozprawie dokonano szczegółowej analizy, wraz z oceną kryterialną układów napędowych współczesnych zbiornikowców *LNG*. Przeanalizowano kierunki rozwoju tych układów. Na podstawie sformułowanych wniosków wskazano główną przyczynę zmniejszonego zainteresowania stosowaniem turbinowych układów napędowych w okrętownictwie. Układy te pomimo szeregu zalet takich jak niezawodność oraz niskie koszty obsługowi, ustępują współczesnym rozwiązaniom napędów gazowców pod względem kryterium energetyczno – emisyjnym, eksploatacyjnym oraz ekonomicznym.

Wychodząc z potrzeby poszukiwania możliwości poprawy sprawności energetycznej turbinowych układów napędowych, przeprowadzono bierny eksperyment eksploatacyjny. Zebrane w trakcie podróży morskich dane oraz dokumentacja techniczno-ruchowa, posłużyły jako źródło dla wielkości wejściowe do bilansu energetycznego zamodelowanego, konwencjonalnego, turbinowego układu napędowego statku. Zidentyfikowano główne źródła energii odpadowej turbinowej siłowni parowej oraz poddano je ocenie jakościowej. Wskazano na wysoki potencjał głównego źródła dyssypacji energii, jakim jest ciepło skraplania pary odlotowej turbiny napędu głównego.

Analiza literatury opisująca współczesne rozwiązania turbinowych układów napędowych oraz ich trendy rozwojowe wskazują, iż producenci tych układów w głównej mierze skupiają się na podnoszeniu parametrów stanu górnego źródła ciepła realizowanego obiegu, zastosowaniu przegrzewu wtórnego pary oraz minimalizowaniu strat wewnętrznych w turbinach, poprzez doskonalenie ich konstrukcji. Wysiłki te jedynie w sposób pośredni dotyczą problematyki odzysku energii odpadowej.

Niniejsza praca stanowi próbę rozpoznania tak scharakteryzowanego problemu badawczego, jakim jest poprawa sprawności obiegu turbinowej siłowni parowej w wyniku zwiększenia efektywności odzysku ciepła skraplania. W tym celu zaproponowano koncepcję modyfikacji poprzez zastosowanie inżektorów parowych w układzie regeneracyjnego podgrzewu wody kotłowej, umożliwiającej efektywne wykorzystanie ciepła skraplania pary odlotowej z turbiny.

Hipoteza pracy zakładała, iż zastosowanie inżektora parowego spowoduje zmniejszenie zapotrzebowania na parę upustową, odzyskując tym samym większą ilość ciepła skraplania pary w procesie regeneracyjnego podgrzewania wody kotłowej.

W rozprawie wyznaczono parametry pracy urządzenia inżektorowego jedno i dwustopniowego dla różnych parametrów pary zasilającej oraz dla różnych stopni eżekcji. Wykorzystując wyznaczone wielkości rozpoznano możliwości zastosowania inżektorów parowych w układach regeneracyjnego podgrzewania wody zasilającej kocioł z podciśnieniowymi i nadciśnieniowymi powierzchniowymi wymiennikami ciepła oraz zbiornikiem mieszankowym.

Zamknięciem problemu badawczego rozprawy była analiza rozwiązań, stanowiących modyfikację układu referencyjnego (zamodelowanego w oparciu o parametry rzeczywistego układu napędowego zbiornikowca *LNG*), od układów najprostszych, wykorzystujących jeden inżektor parowy, do układów o znacznym stopniu złożoności, z wykorzystaniem pięciu wymienników ciepła oraz czterech inżektorów parowych, w tym z dwustopniowymi zespołami inżektorowymi. Przeprowadzone badania numeryczne potwierdziły postawioną

hipotezę, dowodząc iż odpowiednia implementacja proponowanego rozwiązania skutkuje poprawą sprawności cieplnej realizowanego obiegu. Ze względu jednak na stosunkowo niskie wartości uzyskanych stopni regeneracji układu, należało by przeprowadzić analizę ekonomiczną, pod kątem opłacalności stosowania tego typu rozwiązań, uwzględniając koszty inwestycyjne, jak również koszty związane z eksploatacją tych układów.

ABSTRACT

In the dissertation, a detailed analysis was made, along with a criteria evaluation of the propulsion systems of modern LNG carriers. The directions of development of these systems were analysed. On the basis of the formulated conclusions, the main reason for the reduced interest in the use of steam plants has been identified. These propulsion plants, despite a number of advantages such as reliability and low operational costs (*OPEX*), are inferior to modern gas tanker propulsion solutions in terms of energy efficiency, emission, as well as operational and economic criteria.

Due to the need of research for possibilities to improve the energy efficiency of steam propulsion systems, a passive operational experiment was carried out. Data collected during sea voyages as well as technical and operational documentation was used as the source for input data to the heat balance of the modelled, conventional steam propulsion plant of *LNG* carrier. The main waste energy fluxes of a steam plant were identified and subjected to a qualitative assessment. The high potential of the main source of energy dissipation, which is the latent heat of the exhaust steam of the main propulsion turbine, was indicated.

The analysis of the technical papers describing modern solutions of marine steam power plants and the directions of their development shows that main manufacturers of these systems focus mainly on increasing the parameters of the live steam, application of the steam reheat systems and minimizing internal losses in turbines by improving their construction. These efforts only indirectly have to do with the issue of waste energy recovery.

This work is an attempt to identify research problem, which is the improvement of the efficiency of the steam cycle by the increase of the recovery level of latent heat. For this purpose, the concept of modification was proposed through the application of steam jet injectors in the regenerative feed water system, enabling effective use of the latent heat of the main turbine exhaust steam.

The hypothesis of the work assumed that the use of a steam jet injector would reduce the demand for bleed steam, thusly recovering a more of latent heat in the process of regenerative boiler feed water heating.

In the dissertation, the operational parameters of the one and two-stage steam jet injector units for different parameters of the drive steam and for different injection ratio. Using the determined parameters, the possibility of applications of steam jet injectors for regenerative feed water system with negative and positive pressure conventional heat exchangers as well as with deaerator tank was recognized.

The conclusion of the research problem of the dissertation was the analysis of solutions constituting a modification of the reference system (modelled on the basis of the actual propulsion plant of LNG carrier), from the simplest, using one steam injector, to systems with a high degree of complexity, using five heat exchangers and four steam injectors, as well as two-stage injector units.

The conducted numerical tests confirmed the hypothesis, proving that the appropriate implementation of the proposed modification results in the improvement of the thermal efficiency of the cycle. However, due to the relatively low values of the obtained regeneration levels of the system, an economic analysis should be carried out in terms of the profitability of using this solutions, taking into account the capital and operational costs.

SPIS RYSUNKÓW

Rys. 1.1 Wzrost liczby zbiornikowców LNG w latach 2000-2020 z podziałem na rodzaje	
głównych układów napędowych	. 11
Rys. 1.2 Cena gazu ziemnego w latach 1990-2019 w odniesieniu do 1 MMBTU	. 11
Rys. 1.3 Udział różnych rozwiązań układów napędowych zbiornikowców LNG	
w portfelu zamówień stoczniowych	. 12
Rys. 1.4 Uproszczony schemat układu cieplno-przepływowego obiegu Clausiusa-	
Rankinea	. 13
Rys. 1.5 Porównawczy obieg parowo-wodny Clausiusa-Rankinea w układzie	
współrzędnych i-s oraz T-s	. 13
Rys. 1.6 Schemat układu napędowych zbiornikowców LNG	. 14
Rys. 1.7 Wzrost parametrów pary świeżej, w funkcji czasu kalendarzowego prowadzący	
do zwiekszenia dostępnego spadku entalpii w	. 15
Rvs. 1.8 Uproszczony schemat cieplno-przepływowy układu z przegrzewaniem	-
miedzystopniowym	. 16
Rys. 1.9 Uproszczony schemat konwencionalnego turbinowego układu napedowego typu	
CST	19
Rvs 1 10 Uproszczony schemat układu energetycznego typu ATR z turbozespołem typu	• 17
IIRA i kotłem UTR-II	21
Rys 1 11 Turbina URA: przekrój poprzeczny kadłuba wysokiego i średniego ciśnienia	• 41
oraz widok turbiny wraz ze skranlaczem podciśnieniowym	21
Rys. 1.12 Schemat cienlno-przepływowy siłowni parowej typu UST z turbina MR-II	• 41
i kotłem MB	23
Dyg. 1.12 Hybrydowy ylifed nanodowy zbiornikowa LNC projekty STaCE firmy MHI	. 25
Rys. 1.15 Hydryddwy układ hapędowy zbiołnikowca LNG projektu STUGE ininy MIII	. 23 20
Rys. 1.14 Układ napędowy z przekładnią elektryczną (<i>DFDE/TFDE</i>)	. 20
Rys. 1.15 Układ napędowy z ponownym skrapianiem gazu <i>DRL</i>	. 29
Rys. 1.16 Układ napędowy DF SSD, z wolno obrotowymi silnikami firmy MAN	. 30
Rys. 1.1 / Kombinowany układ napędowy COGES	. 31
Rys. 3.1 Schemat ciepino-przepływowy modelu konwencjonalnego turbinowego układu	40
napędowego zbiornikowca LNG	. 42
Rys. 3.2 Algorytm realizacji eksperymentu eksploatacyjnego	. 43
Rys. 3.3 Wydruk ze zintegrowanego systemu nadzoru i monitoringu siłowni (przykład	
karty pomiarowej)	. 44
Rys. 3.4 Zrzut ekranu systemu nadzoru i monitoringu parametrów pracy siłowni	
zbiornikowca LNG	. 45
Rys. 3.5 Algorytm obliczeń bilansu energetycznego obiegu cieplnego układu CST	. 48
Rys. 3.6 Wykres pasmowy Sankeya dla turbinowej siłowni parowej (CST)	. 52
Rys. 4.1 Koncepcja wykorzystania inżektora parowego	. 57
Rys. 4.2 Przekrój poprzeczny obliczanego inżektora parowego z dyszą de Laval	. 58
Rys. 4.3 Proces mieszania się strumieni w inżektorze parowym na wykresie i-s dla	
stopnia eżekcji $G=0,143$. 63
Rys. 4.4 Algorytm wyznaczania parametrów pracy inżektora parowego	. 64
Rys. 5.1 Linia ekspansji pary wodnej w turbinie URA-400	. 69
Rys. 5.2 Zależność ciśnienia mieszaniny pary opuszczającej inżektor parowy w funkcji	
stopnia eżekcji	. 73
Rys. 5.3 Schemat cieplno-przepływowy dwustopniowego zespołu inżektorowego	
zasilanego z jednego upustu pary	. 74
Rys. 5.4 Schemat cieplno-przepływowy dwustopniowego zespołu inżektorowego	
zasilanego z osobnych zaczepów pary	. 74

Rys. 5.5 2	Zależność ciśnienia mieszaniny pary opuszczającej zespół inżektorowy zasilany	
1	parą 3,0 oraz 6,6 barA funkcji pierwszego oraz drugiego stopnia eżekcji	
1	$pl2 = f(\sigma s1, \sigma s2) \dots 7$	5
Rys. 5.6 2	Zależność ciśnienia mieszaniny pary opuszczającej zespół inżektorowy zasilany	
1	parą 3,0 oraz 10 barA funkcji pierwszego oraz drugiego stopnia eżekcji $pl2 =$	
j	$f(\sigma 1s, \sigma 2s)$	6
Rys. 5.7 2	Zależność ciśnienia mieszaniny pary opuszczającej zespół inżektorowy zasilany	
1	parą 6,6 barA w funkcji pierwszego oraz drugiego stopnia eżekcji	
1	$pl2 = f(\sigma 1s, \sigma 2s)7$	6
Rys. 5.8 2	Zależność ciśnienia mieszaniny pary opuszczającej zespół inżektorowy zasilany	
1	parą 6,6 oraz 10 barA funkcji pierwszego oraz drugiego stopnia eżekcji	
1	$pl2 = f(\sigma s1, \sigma s2) \dots 7$	7
Rys. 6.1	Algorytm badań numerycznych układów z zastosowaniem inżektorów parowych 7	8
Rys. 6.2 S	Schemat cieplno-przepływowy prostego układu referencyjnego	9
Rys. 6.3 S	Schemat cieplno-przepływowy układu z jednostopniowym podgrzewaniem	
V	wody zasilającej z zastosowaniem podgrzewacza podciśnieniowego oraz	
1	inžektora parowego	1
Rys. 6.4 0	Obliczone wartości sprawności regeneracyjnego układu z podciśnieniowym	
	wymiennikiem ciepła zasilanym parą z inżektora regeneracyjnego	2
Rys. 6.5 (Obliczone stopnie regeneracji układu z powierzchniowym, podciśnieniowym	~
	wymiennikiem ciepła zasilanym parą z inżektora regeneracyjnego	2
Rys. 6.6	Wykres pasmowy Sankey'a dla układu z inżektorem parowym zasilanym parą	.
	upustową 3,0 barA i podgrzewaczem podcisnieniowym	3
Rys. 6.7	Schemat cieplno-przepływowy dwustopniowego układu regeneracyjnego	
	z inzektorami parowymi w układzie rownoległym CR P 2s row	,4
Rys. 6.8 S	Schemat ciepino-przepływowy dwustopniowego układu regeneracyjnego	
	wykorzystującego inzektory parowe – układ rownoległy CRP 2s szeregowy	,S
Kys. 6.9	wykres pasmowy Sankey a układu dwustopniowego układu regeneracyjnego	
	wykorzystującego inzektory parowe w układzie rownoległym CK P 2s	6
I Dua 6 10	rownolegiy	0
Kys. 0.10	wykres pasinowy sankey a dia dwustopinowego układu regeneracyjnego	6
Dug 6 11	Obliczene warteści aprowneści układów z dwome newierzebniowymi	U
Kys. 0.11	nodciśnieniowymi wymiennikami cienta, zasilanych para odlotowa z zespołu	
	dwách inżektorów parowych	7
Rvs 612	Obliczone stopnie regeneracji układów z dwoma powierzchniowymi	'
Rys. 0.12	podciśnieniowymi wymiennikami cienta, zasilanych para odlotowa z zespołu	
	dwóch inżektorów parowych	27
Rvs 613	Schemat cienlno-przepływowy układu z jednostopniowym podgrzewaniem	'
Ry5. 0.15	wody zasilającej z wykorzystaniem mieszankowego wymiennika ciepła	
	zasilanego regeneracyjnym inżektorem narowym	9
Rvs 614	Obliczone wartości sprawności regeneracyjnego układu z mieszankowym	
10,5. 0.1 1	wymiennikiem ciepła zasilanym para z inżektora regeneracyjnego	0
Rvs 615	5 Obliczone stopnie regeneracii układu z mieszankowym wymiennikiem ciepła	Ŭ
10,50 0.12	zasilanym para z inżektora regeneracyjnego	0
Rvs. 6.16	Pasmowy wykres Sankey'a układu z inżektorem parowym zasilanym para	Ŭ
<u>,</u>	upustowa 3,0 barA i mieszankowym wymiennikiem cienła)1
Rys. 6.17	Schemat cieplno-przepływowy układu z jednostopniowym podgrzewaniem	
<u> </u>	wody zasilającej z wykorzystaniem nadciśnieniowego wymiennika ciepła	
	zasilanego regeneracyjnym inżektorem parowym oraz pompą skroplin	2

Rys. 6.18 Wyznaczone wartości sprawności regeneracyjnego układu z nadciśnieniowym wymiennikiem ciepła zasilanym para z inżektora regeneracyjnego 94
Rys. 6.19 Obliczone stopnie regeneracji układu z nadciśnieniowym wymiennikiem ciepła
zasilanym parą z inżektora regeneracyjnego
Rys. 6.20 Schemat cieplno-przepływowy układu z jednostopniowym podgrzewaniem
wody zasilającej z wykorzystaniem dwustopniowego zespołu inżektorowego
Zasilaneg
Rys. 6.21 Obliczone wartości sprawności układu regeneracyjnego z dwustopniowym
Pure 6.22 Obliggene sternig reconcercit układu z duwsterniowym zasnałam
inżektorowym
Rys 6.23 Schemat cienlno-przenływowy układu z dwystopniowym podarzewaniem
wody zasilającej z wykorzystaniem dwystopniowego zespołu inżektorowego
zasilanego
Rys 6.24 Wyznaczone wartości sprawności układu regeneracyjnego z dwustopniowym
zespołem inżektorowym przy zastosowaniu jednego oraz dwóch wymienników
cienta
Rvs. 6.25 Wyznaczone stopnia regeneracji układu z dwustopniowym zespołem
inżektorowym przy zastosowaniu jednego oraz dwóch wymienników ciepła 99
Rys. 6.26 Wyznaczone wartości przyrostu stopnia regeneracji układu w wyniku
zastosowania dwustopniowego zespołu inżektorowego z jednym oraz dwoma
wymiennikami ciepła
Rys. 7.1 Schemat cieplno-przepływowy uproszczonego modelu turbinowego układu
napędowego (układ referencyjny) 103
Rys. 7.2 Schemat cieplno-przepływowy modelu turbinowego układu napędowego
z zastosowaniem jednego inżektora parowego CR3/1 105
Rys. 7.3 Schemat cieplno-przepływowy modelu turbinowego układu napędowego
z zastosowaniem dwóch inżektorów parowych CR3/2 108
Rys. 7.4 Schemat cieplno-przepływowy modelu turbinowego układu napędowego
z zastosowaniem trzech niezależnych inżektorów parowych oraz dodatkowego
niskociśnieniowego podgrzewacza CR4/3 111
Rys. 7.5 Schemat cieplno-przepływowy modelu turbinowego układu napędowego
z zastosowaniem jednego niezależnego inżektora parowego oraz jednego
dwustopniowego zespołu inżektorowego CR4/3 2s1 114
Rys. 7.6 Schemat cieplno-przepływowy modelu turbinowego układu napędowego z
zastosowaniem jednego niezaleznego inzektora parowego oraz jednego
dwustopniowego zespoiu inzektorowego CR4/3 2s2 11/
kys. /./ Schemat clepino-przepływowy modelu turbinowego układu napędowego,
wykorzystującego pięc wymiennikow ciepia z zastosowaniem czterech inżektorów parowych, w tym jednego, dwystopniowego zespoły inżektorowego
CR5/4 N 2s1 121
Rys 7.8 Schemat cienlno-przepływowy modelu turbinowego układu napedowego
wykorzystującego nieć wymienników cienła z zastosowaniem dwóch
dwistonniowych zespołów inżektorowych CR5/4 N 2s2
Rys. 7.9 Schemat cieplno-przepływowy modelu turbinowego układu napedowego
wykorzystującego pieć wymienników ciepła oraz z zastosowaniem czterech
inżektorów parowych, w tym iednego, dwustopniowego zespołu inżektorowego
CR5/4 W 2s1

Rys. 7.10	Schemat cieplno-przepływowy modelu turbinowego układu napędowego,	
	wykorzystującego pięć wymienników ciepła oraz z zastosowaniem dwóch	
	dwustopniowych zespołów inżektorowych CR5/4 W 2s2	130

SPIS TABEL

Tab.	1.1	Wskaźniki efektowności energetycznej układu napędowego i elementów	
		układu energetycznego w funkcji obciązenia napędu głównego zbiornikowca	20
Tak	1.2	Zalmasy i afaltty madamizacii yldadáyy ananasty azmyala tymy UST	20
	1.2	Zakresy i elekty modernizacji układow energetycznych typu UST	24
Tab.	1.3	Rozwoj cech i parametrow pracy głównych układow napędowych	20
T 1	1 4	zbiornikowcow L/VG z turbozespołami parowymi	26
Tab.	1.4	Sprawnosc układow napędowych i poszczegolnych elementów łancucha	22
T 1		napędowego	32
Tab.	1.5	Emisja ditlenku węgla oraz tlenków azotu i siarki dla analizowanych układów	
		napędowych	32
Tab.	1.6	Porównanie cech jakościowych konfrontowanych układów napędowych	
		zbiornikowców LNG	33
Tab.	3.1	Podstawowe dane badanego układu napędowego (CST-2003)	41
Tab.	3.2	Wielkości charakteryzujące poszczególne elementy zdekomponowanego	
		układu napędowego (wielkości wejściowe dla bilansu energetycznego modelu)	46
Tab.	3.3	Właściwości termodynamiczne czynnika roboczego w płaszczyznach	
		kontrolnych modelu układu	47
Tab.	3.4	Wyniki bilansu energetycznego dla obciążenia układu napędowego 100%	
		MCR (29080 kW @ 90 obr/min)	50
Tab.	3.5	Porównanie wyników obliczeń modelu matematycznego ze zmierzonymi	
		wartościami strumieni masy w charakterystycznych płaszczyznach kontrolnych	54
Tab.	3.6	Funkcje stanu wyznaczone do oceny jakości źródeł energii odpadowej	55
Tab.	4.1	Współczynniki strat elementów konstrukcyjnych inżektora parowego	59
Tab.	4.2	Wyznaczone i obliczone parametry stanu pary w płaszczyznach kontrolnych	
		inżektora parowego dla przyjetych stopni eżekcji	63
Tab.	4.3	Parametry termodynamiczne pary w płaszczyznach kontrolnych układu	
		referencyinego (Wariant A)	65
Tab.	4.4	Parametry termodynamiczne pary w płaszczyznach kontrolnych	00
1 401		zmodyfikowanego układu (Wariant B)	66
Tab	4 5	Sprawności cieplne układów oraz stopień ich regeneracji dla różnych stopni	00
140.	1.2	eżekcii	67
Tah	51	Parametry stanu i własności termodynamiczne pary wodnej objegu <i>CST</i>	07
1 a.	5.1	zbiornikowca LNG	68
Tah	52	Parametry pracy inżektora parowego przy zasilaniu para upustowa o ciśnieniu	00
1 au.	5.2	10.5 hor A	70
Tab	5 2	19,5 UdiA	70
1 au.	5.5	Parameny pracy mzektora parowego przy zasnamu parą upustową o cismemu	71
T 1	5 1		/1
Tab.	5.4	Parametry pracy inzektora parowego przy zasilaniu parą upustową o cisnieniu	71
T 1		0,0 Dar	/1
Tab.	5.5	Parametry pracy inzektora parowego zasilanego parą odlotową turbinowej	70
m 1		pompy wody zasilającej kocioł, o cisnieniu 3,1 barA	12
Tab.	5.6	Parametry pracy inžektora parowego przy zasilaniu parą upustową o ciśnieniu	
		3 barA	72

Tab. 6.1 Parametry termodynamiczne pary w płaszczyznach kontrolnych prostego układu referencyjnego	80
Tab. 6.2 Wyznaczone parametry pary opuszczającej regeneracyjny inżektor parowy w zależności od ciśnienia pary zasilającej oraz założonego stopnia eżekcji	93
Tab. 7.1 Parametry termodynamiczne czynnika roboczego w płaszczyznach kontrolnych	104
Tab. 7.2 Parametry termodynamiczne czynnika roboczego w płaszczyznach kontrolnych turbinowego układu napędowego z zastosowaniem jednego inżektora	. 104
parowego Tab. 7.3 Parametry termodynamiczne czynnika roboczego w płaszczyznach kontrolnych turbinowego układu napędowego z zastosowaniem dwóch inżektorów	. 106
 parowych CR3/2 Tab. 7.4 Parametry termodynamiczne czynnika roboczego w płaszczyznach kontrolnych turbinowego układu napędowego z zastosowaniem trzech niezależnych inżektorów parowych oraz dodatkowego niskociśnieniowego podgrzewacza 	. 109
Tab. 7.5 Parametry termodynamiczne czynnika roboczego w płaszczyznach kontrolnych turbinowego układu napędowego z zastosowaniem jednego niezależnego inżektora parowego oraz jednego dwustopniowego zespołu inżektorowego	. 112
Tab. 7.6 Zestawienie wyników oblicxzeń bilansów cieplnych układu CR4/3 2s1 dla	. 115
różnych stopni eżekcji G ₃ inżektora trzeciego stopnia Tab. 7.7 Parametry termodynamiczne czynnika roboczego w płaszczyznach kontrolnych turbinowego układu napędowego z zastosowaniem jednego niezależnego inżektora parowego oraz jednego dwustopniowego zespołu inżektorowego	. 116
Tab. 7.8 Zestawienie wyników obliczeń bilansów cieplnych układu CR4/3 2s1 dla	. 118
różnych stopni eżekcji G ₃ inżektora trzeciego stopnia Tab. 7.9 Parametry termodynamiczne czynnika roboczego w płaszczyznach kontrolnych turbinowego układu napędowego wykorzystującego pięć wymienników ciepła z zastosowaniem czterech inżektorów parowych, w tym jednego,	. 119
dwustopniowego zespołu inżektorowego CR5/4 2s1 Tab. 7.10 Zestawienie wyników obliczeń bilansów cieplnych układu CR5/4 N 2s1 dla różnych stopni czekcji inżektora trzeciego stopnia G2 oraz inżektora	. 122
4 czwartego stopnia G_{4} Tab. 7.11 Parametry termodynamiczne czynnika roboczego w płaszczyznach kontrolnych turbinowego układu napędowego wykorzystującego pięć	. 123
wymienników ciepła z zastosowaniem dwóch dwustopniowych zespołów inżektorowych CR5/4 N 2s2	. 125
Tab. 7.12 Zestawienie wyników obliczeń bilansów cieplnych układu CR5/4 N 2s2 dla różnych stopni eżekcji inżektora trzeciego stopnia G ₃ oraz inżektora dezwartego stopnia G.	126
 Tab. 7.13 Parametry termodynamiczne czynnika roboczego w płaszczyznach kontrolnych turbinowego układu napędowego, wykorzystującego pięć wymienników ciepła z zastosowaniem czterech inżektorów parowych, w tym jednego, dwustopniowego zespołu inżektorowego CR5/4 W 2s1 	. 120
Tab. 7.14 Zestawienie wyników obliczeń bilansów cieplnych układu CR5/4 W 2s1 dla różnych stopni eżekcji inżektora trzeciego stopnia G ₃ oraz inżektora 4czwartego stopnia G ₄	120
102 mar 1050 510 pina 04	· · 4)

Tab. 7.15 Parametry termodynamiczne czynnika roboczego w płaszczyznach	
kontrolnych turbinowego układu napędowego, wykorzystującego pięć	
wymienników ciepła oraz z zastosowaniem dwóch dwustopniowych	
zespołów inżektorowych CR5/4 W 2s213	31
Tab. 7.16 Zbiorcze wyniki obliczeń bilansów energetycznych układów CR5/4 W 2s2	
w zależności od założonych stopni eżekcji G_3 oraz G_4 13	32
Tab. 7.17 Zbiorcze wyniki układów CR5/4, dla wariantów o maksymalnej sprawności 13	32
Tab. 7.18 Zbiorcze wyniki obliczeń bilansów cieplnych rozpatrywanych układów dla	
wariantów o najwyższej sprawności13	34

AKADEMIA MORSKA w SZCZECINIE

WYDZIAŁ MECHANICZNY

mgr inż. Szymon Grzesiak

Koncepcja modyfikacji złożonego obiegu parowego w turbinowym układzie napędowym zbiornikowca

ZAŁĄCZNIKI DO ROZPRAWY DOKTORSKIEJ

Promotor: dr hab. inż. Andrzej Adamkiewicz, prof. AM w Szczecinie Promotor pomocniczy: dr inż. st. of. mech. okr. Jan Drzewieniecki, prof. AM w Szczecinie

Szczecin 2022

SPIS TREŚCI ZAŁĄCZNIKÓW

ZAŁĄCZNIK NR 1	. 3
Z1. DOBÓR PARAMETRÓW PRACY INŻEKTORA PAROWEGO	. 4
Z1.1. Wyznaczanie parametrów pracy inżektora parowego pierwszego stopnia	. 4
Z1.2. Wyznaczanie parametrów pracy inżektora drugiego stopnia (zespołu inżektorowego)	. 7
Z1.2.1.Układ szeregowy – Para zasilająca inżektor pierwszego stopnia p _{s1} =6,6 barA, inżektor drugiego stopnia p _{s2} =10 barA	. 7
Z1.2.2. Układ szeregowy – Para zasilająca inżektor pierwszego stopnia p _{s1} =3,0 barA, inżektor drugiego stopnia p _{s2} =10 barA 1	12
Z1.2.3. Układ szeregowy – Para zasilająca inżektor pierwszego stopnia p _{s1} =6,6 barA, inżektor drugiego stopnia p _{s2} =6,6 barA 1	17
Z1.2.4. Układ szeregowy – Para zasilająca inżektor pierwszego stopnia p _{s1} =3,0 barA, inżektor drugiego stopnia p _{s2} =6,6 barA	22
ZAŁĄCZNIK NR 2	27
Z2. BADANIA NUMERYCZNE UKŁADÓW Z ZASTOSOWANIEM INŻEKTORÓW PAROWYCH DO REGENERACYJNEGO PODGRZEWANIA WODY ZASILAIACELKOCIOŁ PAROWY	28
Z2.1. Układy referencyjne	28
$Z_{2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1$	28
Z2.1.2. Układy referencyjne ze zbiornikiem mieszankowym CR _{D ref} z	30
Z2.1.3. Układ referencyjny z nadciśnieniowym wymiennikiem ciepła $CR_{N ref}$	32
Z2.2. Układ z zastosowaniem podciśnieniowych powierzchniowych wymienników ciepła	37
Z2.2.1. Układy jednostopniowego podgrzewania wody zasilającej	37
Z2.2.2. Dwustopniowe podgrzewanie wody zasilającej z wykorzystaniem inżektorów parowych	42
Z2.3. Układ z zastosowaniem zbiornika mieszankowego	49
Z2.4. Układ z zastosowaniem nadciśnieniowych powierzchniowych wymienników ciepła	59
Z2.4.1.Układy jednostopniowego sprężania pary	59
Z2.4.2. Układy dwustopniowego sprężania pary	62
SPIS RYSUNKÓW	00
SPIS TABEL	02

ZAŁĄCZNIK NR 1

DOBÓR PARAMETRÓW PRACY INŻEKTORA PAROWEGO

zawierający wyniki obliczeń do rozdziału 5 rozprawy

Z1.DOBÓR PARAMETRÓW PRACY INŻEKTORA PAROWEGO

Z1.1. Wyznaczanie parametrów pracy inżektora parowego pierwszego stopnia

Tab. Z1.1 Wyniki obliczeń parametrów pracy inżektora parowego przy zasilaniu parą upustową o ciśnieniu 19,5 barA

ZAŁOŻONY STOPIEŃ EŻEKCJI										
Strumień masy pary zasysanej [kg/s]	mx	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY PA	ARY ZA D	YSZĄ (N-N)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	i _{Nizen}	2181,8	2181,8	2181,8	2181,8	2181,8	2181,8	2181,8	2181,8	2181,8
Prędkość za dyszą [m/s]	WN	861,7	957,4	1004,9	1043,8	1077,1	1148,9	1196,8	1231,0	1256,6
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2232,1	2232,1	2232,1	2232,1	2232,1	2232,1	2232,1	2232,1	2232,1
PARAMETRY PARY NA D	OLOCIE D	DO DYFUZ	ORA (D-D)							
Prędkość na wlocie do dyfuzora [m/s]	WD	861,7	957,4	1004,9	1043,8	1077,1	1148,9	1196,8	1231,0	1256,6
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2521,5	2509,0	2500,1	2491,4	2482,9	2461,7	2445,2	2432,3	2422,0
Temperatura pary na dolocie do dyfuzora [°C]	t _D	37,91	37,91	37,91	37,91	37,91	37,91	37,91	37,91	37,91
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	21,26	21,15	21,07	20,99	20,91	20,72	20,57	20,46	20,37
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	0,9800	0,9748	0,9711	0,9675	0,9640	0,9552	0,9484	0,9430	0,9387
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	8,140	8,100	8,071	8,043	8,016	7,948	7,895	7,853	7,820
PARAMETRY PAR	ZA DYFU	UZOREM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	i,	2830,7	2889,9	2919,2	2943,2	2963,8	3008,2	3037,8	3058,9	3074,8
Entalpia przy sprężaniu izentropowym [kJ/kg]	i _{Lizen}	2799,8	2851,8	2877,3	2898,0	2915,7	2953,6	2978,5	2996,3	3009,5
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	159,6	186,7	200,0	210,8	220,0	239,6	252,6	261,9	268,8
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,359	0,504	0,603	0,71	0,809	1,106	1,38	1,625	1,84
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	5,548	4,199	3,610	3,135	2,803	2,131	1,750	1,512	1,352
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	8,140	8,100	8,071	8,043	8,016	7,948	7,895	7,853	7,820
Temperatura na wylocie z dyfuzora [°C]	tL	175,5	206,2	221,3	233,7	244,3	267,1	282,2	293,0	301,1
Ciśnienie na wylocie z dyfuzora [barA]	pL	0,359	0,504	0,603	0,710	0,809	1,106	1,380	1,625	1,840
Objętość właściwa na wylocie z dyfuzora [m3/kg]	V _L	5,755	4,379	3,775	3,286	2,943	2,247	1,850	1,601	1,434
Stopień suchości na wylocie z dyfuzora [-]	xL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	S	8,210	8,181	8,159	8,131	8,112	8,052	8,004	7,866	7,937

Tab. Z1.2 Wyniki obliczeń parametrów pracy inżektora parowego przy zasilaniu parą upustową o ciśnieniu 10 barA

ZAŁOŻONY STOPIEŃ EŻEKCJI										
Strumień masy pary zasysanej [kg/s]	mx	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY PARY ZA DYSZĄ (N-N)										
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2190,0	2190,0	2190,0	2190,0	2190,0	2190,0	2190,0	2190,0	2190,0
Prędkość za dyszą [m/s]	WN	1238,2	1238,2	1238,2	1238,2	1238,2	1238,2	1238,2	1238,2	1238,2
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2231,8	2231,8	2231,8	2231,8	2231,8	2231,8	2231,8	2231,8	2231,8
PARAMETRY PARY NA D	OLOCIE	DO DYFUZ	ORA (D-D)							
Prędkość na wlocie do dyfuzora [m/s]	WD	778,9	865,4	908,3	943,4	973,6	1038,5	1081,7	1112,6	1135,8
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2473,3	2462,2	2454,5	2447,0	2439,8	2421,9	2408,0	2397,2	2388,5
Temperatura pary na dolocie do dyfuzora [°C]	t _D	38,00	38,00	38,00	38,00	38,00	38,00	38,00	38,00	38,00
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	20,83	20,73	20,66	20,59	20,53	20,36	20,24	20,14	20,06
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	0,9600	0,9554	0,9522	0,9491	0,9436	0,9387	0,9329	0,9284	0,9248
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,985	7,950	7,925	7,901	7,878	7,820	7,775	7,740	7,713
PARAMETRY PAR	Y ZA DYF	JZOREM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2733,2	2781,5	2805,5	2825,1	2842,0	2878,2	2902,4	2919,6	2932,6
Entalpia przy sprężaniu izentropowym [kJ/kg]	i _{Lizen}	2707,2	2749,6	2770,4	2787,3	2801,7	2832,6	2852,9	2867,4	2878,2
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	111,5	133,9	144,9	153,9	161,5	177,9	188,7	196,4	202,1
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,307	0,418	0,493	0,566	0,641	0,847	1,03	1,185	1,325
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	5,760	4,476	3,897	3,466	3,115	2,444	1,030	1,817	1,644
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,985	7,950	7,925	7,901	7,878	7,820	7,775	7,740	7,713
Temperatura na wylocie z dyfuzora [°C]	tL	125,0	150,4	162,9	173,2	182,1	201,0	213,0	222,7	229,5
Ciśnienie na wylocie z dyfuzora [barA]	pL	0,307	0,418	0,493	0,566	0,641	0,847	1,030	1,185	1,325
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	5,965	4,660	4,068	3,626	3,265	2,573	2,171	1,921	1,741
Stopień suchości na wylocie z dyfuzora [-]	xL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	S	8,051	8,027	8,007	7,988	7,997	7,918	7,878	7,849	7,823

Tab. Z1.3 Wyniki obliczeń parametrów pracy inżektora parowego przy zasilaniu parą upustową o ciśnieniu 6,6 barA

ZAŁOŻONY STOPIEŃ EŻEKCJI										
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY	Y PARY ZA D	YSZĄ (N-N)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2200,0	2200,0	2200,0	2200,0	2200,0	2200,0	2200,0	2200,0	2200,0
Prędkość za dyszą [m/s]	WN	1160,7	1160,7	1160,7	1160,7	1160,7	1160,7	1160,7	1160,7	1160,7
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2237,2	2237,2	2237,2	2237,2	2237,2	2237,2	2237,2	2237,2	2237,2
PARAMETRY PARY NA	A DOLOCIE I	DO DYFUZ	ORA (D-D))						
Prędkość na wlocie do dyfuzora [m/s]	WD	730,1	811,3	851,4	884,4	912,7	973,5	1014,1	1043,0	1064,8
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2450,6	2440,6	2433,8	2427,1	2420,7	2404,8	2392,5	2382,9	2375,3
Temperatura pary na dolocie do dyfuzora [°C]	t _D	38,00	38,00	38,00	38,00	38,00	38,00	38,00	38,00	38,00
Objętość pary na dolocie do dyfuzora [m ³ /kg]	V _D	20,62	20,53	20,47	20,41	20,35	20,21	20,10	20,01	19,94
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	0,9506	0,9464	0,9436	0,9408	0,9382	0,9316	0,9265	0,9250	0,9193
Entropia pary na dolocie do dyfuzora [kJ/K kg]	s _D	7,912	7,880	7,858	7,837	7,816	7,765	7,725	7,694	7,670
PARAMETRY P	ARY ZA DYF	UZOREM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2684,0	2726,9	2748,1	2765,5	2780,5	2812,6	2834,0	2849,3	2860,8
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2660,7	2698,2	2716,7	2731,7	2744,5	2771,8	2789,9	2802,7	2812,3
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	87,3	107,2	117,0	125,0	131,9	146,5	156,1	163,0	168,2
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,274	0,366	0,426	0,485	0,544	0,703	0,84	0,959	1,061
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	6,042	4,773	4,206	3,769	3,417	2,738	2,343	2,085	1,906
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,912	7,880	7,858	7,837	7,816	7,765	7,725	7,694	7,670
Temperatura na wylocie z dyfuzora [°C]	tL	99,3	122,0	133,2	142,4	150,3	162,3	178,6	186,7	192,7
Ciśnienie na wylocie z dyfuzora [barA]	pL	0,274	0,366	0,426	0,485	0,544	0,703	0,840	0,959	1,061
Objętość właściwa na wylocie z dyfuzora [m3/kg]	vL	6,248	4,962	4,384	3,937	3,576	2,877	2,469	2,201	2,015
Stopień suchości na wylocie z dyfuzora [-]	xL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	SL	7,976	7,954	7,937	7,920	7,903	7,860	7,826	7,799	7,777

Tab. Z1.4 Wyniki obliczeń parametrów pracy inżektora parowego przy zasilaniu parą odlotową z turbiny pompy wody kotłowej o ciśnieniu 3,10 barA

ZAŁOŻONY STOPIEŃ EŻEKCJI										
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	
Strumień masy pary zasilającej inżektor [kg/s]	mc	2	2,33	2,66	3	4	5	6	7	
Stopień eżekcji [-]	б	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143	
PARAMETRY PARY ZA DY	SZĄ (N-N)								
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2222,0	2222,0	2222,0	2222,0	2222,0	2222,0	2222,0	2222,0	
Prędkość za dyszą [m/s]	WN	1017,6	1017,6	1017,6	1017,6	1017,6	1017,6	1017,6	1017,6	
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2251,1	2251,1	2251,1	2251,1	2251,1	2251,1	2251,1	2251,1	
PARAMETRY PARY NA DOLOCIE D	O DYFUZ	ORA (D-D)								
Prędkość na wlocie do dyfuzora [m/s]	WD	711,2	746,5	775,3	800,1	853,5	889,0	914,4	933,5	
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2407,7	2402,4	2397,3	2392,3	2380,0	2370,6	2363,2	2357,3	
Temperatura pary na dolocie do dyfuzora [°C]	t _D	37,91	37,91	37,91	37,91	37,91	37,91	37,91	37,91	
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	20,24	20,19	20,14	20,10	19,99	19,90	19,84	19,78	
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	0,9328	0,9381	0,9284	0,9264	0,9189	0,9174	0,9143	0,9119	
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,774	7,757	7,741	7,725	7,685	7,655	7,631	7,612	
PARAMETRY PARY ZA DYFU	ZOREM (L-L)								
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	
Entalpia pary za dyfuzorem [kJ/kg]	i,	2633,5	2650,1	2663,8	2675,5	2700,6	2717,4	2729,3	2738,3	
Entalpia przy sprężaniu izentropowym [kJ/kg]	i _{Lizen}	2610,9	2625,4	2637,1	2647,1	2668,5	2682,7	2692,7	2700,2	
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	66,8	69,7	75,9	81,3	92,8	100,4	105,9	110,0	
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,271	0,308	0,345	0,38	0,471	0,547	0,611	0,664	
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	5,728	5,101	4,635	4,273	3,558	3,127	2,839	2,640	
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	0,996	1,000	1,000	1,000	1,000	1,000	1,000	1,000	
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,774	7,757	7,741	7,725	7,685	7,655	7,631	7,612	
Temperatura na wylocie z dyfuzora [°C]	tL	73,4	82,2	89,4	95,6	109,1	118,0	124,4	129,3	
Ciśnienie na wylocie z dyfuzora [barA]	pL	0,271	0,308	0,345	0,380	0,471	0,547	0,611	0,664	
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	5,867	5,293	4,822	4,452	3,722	3,279	2,983	2,778	
Stopień suchości na wylocie z dyfuzora [-]	xL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	
Entropia na wylocie z dyfuzora [kJ/K kg]	S ₁	7,840	7,829	7,815	7,802	7,771	7,746	7,725	7,710	

Tab. Z1.5 Wyniki obliczeń parametrów pracy inżektora parowego przy zasilaniu parą upustową o ciśnieniu 3,0 barA

ZAŁOŻONY STOPIE	Ń EŻEKCJI							
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY PARY ZA	DYSZĄ (N-I	V)						
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2392,1	2392,1	2392,1	2392,1	2392,1	2392,1	2392,1
Prędkość za dyszą [m/s]	W _N	1178,8	1178,8	1178,8	1178,8	1178,8	1178,8	1178,8
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2427,0	2427,0	2427,0	2427,0	2427,0	2427,0	2427,0
PARAMETRY PARY NA DOLOCIE	DO DYFUZ	ORA (D-D)					
Prędkość na wlocie do dyfuzora [m/s]	WD	864,7	898,2	926,9	988,7	1029,9	1059,3	1081,4
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2572,2	2570,5	2568,4	2561,5	2555,3	2549,9	2545,5
Temperatura pary na dolocie do dyfuzora [°C]	t _D	39,15	38,23	37,91	37,91	37,91	37,91	37,91
Objętość pary na dolocie do dyfuzora [m ³ /kg]	$v_{\rm D}$	21,78	21,72	21,68	21,62	21,56	21,52	21,48
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	0,9994	0,9966	0,9940	0,9892	0,9899
Entropia pary na dolocie do dyfuzora [kJ/K kg]	s _D	8,303	8,298	8,291	8,269	8,249	8,231	8,217
PARAMETRY PARY ZA DY	FUZOREM	(L-L)						
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2851,0	2872,4	2890,7	2930,2	2956,5	2975,3	2989,5
Entalpia przy sprężaniu izentropowym [kJ/kg]	i _{Lizen}	2823,1	2842,2	2858,5	2893,3	2916,4	2932,8	2945,1
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	171,4	181,3	189,7	207,8	219,7	228,1	234,4
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,283	0,313	0,343	0,423	0,49	0,546	0,594
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	7,235	6,688	6,216	5,237	4,632	4,228	3,935
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	8,303	8,298	8,291	8,269	8,249	8,231	8,217
Temperatura na wylocie z dyfuzora [°C]	tL	185,7	196,8	206,3	226,6	240,1	249,7	256,9
Ciśnienie na wylocie z dyfuzora [barA]	pL	0,283	0,313	0,343	0,423	0,490	0,546	0,594
Objętość właściwa na wylocie z dyfuzora [m3/kg]	v_L	7,471	6,918	6,440	5,443	4,825	4,411	4,411
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	SL	8,364	8,363	8,360	8,344	8,328	8,315	8,303

Z1.2. Wyznaczanie parametrów pracy inżektora drugiego stopnia (zespołu inżektorowego)

Z1.2.1. Układ szeregowy – Para zasilająca inżektor pierwszego stopnia p_{s1}=6,6 barA, inżektor drugiego stopnia p_{s2}=10 barA

Tab. Z1.6 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=6,6 barA oraz dla drugiego stopnia p_{s2}=10 barA, stopień eżekcji pierwszego stopnia G_{s1}=0,667

s1=6,6 barA; 6	1=0,667;	s2=10 ba	rA										
ZAŁOŻONY STOPIEŃ EŻEKCJI Strumień masy pary zasysanej [kg/s] n m _k 1 <th colspa="5</td>													
Strumień masy pary zasysanej [kg/s]	mx	1	1	1	1	1	1	1	1	1			
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7			
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143			
PARAMETRY	ARY ZA D	YSZĄ (N-N)										
Entalpia przy izentropowym rozprężaniu [kJ/kg]	i _{Nizen}	2375,8	2375,8	2375,8	2375,8	2375,8	2375,8	2375,8	2375,8	2375,8			
Prędkość za dyszą [m/s]	W _N	1119,5	1119,5	1119,5	1119,5	1119,5	1119,5	1119,5	1119,5	1119,5			
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2408,2	2408,2	2408,2	2408,2	2408,2	2408,2	2408,2	2408,2	2408,2			
PARAMETRY PARY NA		DO DYFUZ	ORA (D-D)										
Prędkość na wlocie do dyfuzora [m/s]	WD	704,2	782,4	821,2	853,0	880,2	938,9	978,0	1006,0	1026,9			
Entalpia pary na dolocie do dyfuzora [kJ/kg]	iD	2693,7	2669,9	2656,4	2644,3	2633,3	2607,6	2588,9	2574,8	2563,9			
Temperatura pary na dolocie do dyfuzora [°C]	t _D	104,33	92,07	85,07	78,89	73,28	67,03	67,03	67,03	67,03			
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	6,33	6,12	6,00	5,90	5,80	5,66	5,61	5,58	5,55			
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	0,9943	0,9863	0,9803	0,9756			
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	8,001	7,937	7,900	7,866	7,835	7,759	7,704	7,663	7,631			
PARAMETRY PAR	RY ZA DYF	UZOREM (L-L)		•					-			
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60			
Entalpia pary za dyfuzorem [kJ/kg]	iL	2886,8	2909,5	2920,8	2930,0	2938,0	2955,0	2966,4	2974,5	2980,6			
Entalpia przy sprężaniu izentropowym [kJ/kg]	i _{Lizen}	2867,5	2885,6	2894,4	2901,5	2907,5	2920,3	2928,6	2934,5	2938,9			
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	195,2	204,8	209,5	213,3	216,5	223,5	228,2	231,5	234,1			
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,672	0,839	0,948	1,053	1,159	1,444	1,689	1,896	2,074			
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	v _{L izen}	3,205	2,618	2,339	2,122	1,940	1,578	1,361	1,219	1,120			
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000			
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	8,001	7,937	7,900	7,866	7,835	7,759	7,704	7,663	7,631			
Temperatura na wylocie z dyfuzora [°C]	tL	205,0	216,9	222,8	227,7	231,9	241,0	247,1	251,5	254,8			
Ciśnienie na wylocie z dyfuzora [barA]	pL	0,672	0,839	0,948	1,053	1,159	1,444	1,689	1,896	2,074			
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	3,273	2,686	2,405	2,186	2,002	1,634	1,413	1,269	1,167			
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000			
Entropia na wylocie z dyfuzora [kJ/K kg]	SL	8,042	7,987	7,954	7,924	7,896	7,828	7,778	7,741	7,711			

Tab. Z1.7 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=6,6 barA oraz dla drugiego stopnia p_{s2}=10 barA, stopień eżekcji pierwszego stopnia G_{s1}=0,500

s1=6,6 barA; 61	=0,500;	s2=10 bar	A							
ZAŁOŻONY	STOPIEŃ	EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	mx	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY PA	ARY ZA D	YSZĄ (N-N)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2416,8	2416,8	2416,8	2416,8	2416,8	2416,8	2416,8	2416,8	2416,8
Prędkość za dyszą [m/s]	W _N	1088,5	1088,5	1088,5	1088,5	1088,5	1088,5	1088,5	1088,5	1088,5
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2447,2	2447,2	2447,2	2447,2	2447,2	2447,2	2447,2	2447,2	2447,2
PARAMETRY PARY NA D		O DYFUZ	ORA (D-D)							
Prędkość na wlocie do dyfuzora [m/s]	WD	684,7	760,8	798,5	829,4	855,9	912,9	951,0	978,1	998,5
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2724,7	2701,0	2687,5	2675,6	2664,8	2639,5	2621,2	2607,5	2596,7
Temperatura pary na dolocie do dyfuzora [°C]	t _D	120,84	108,64	101,72	95,62	90,09	77,29	73,74	73,74	73,74
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	4,95	4,79	4,70	4,62	4,55	4,39	4,32	4,29	4,27
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9952	0,9892	0,9846
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,949	7,888	7,852	7,820	7,790	7,720	7,667	7,627	7,596
PARAMETRY PAR	ZA DYF	JZOREM (L-L)	-					•	
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2903,9	2923,8	2933,7	2941,7	2948,7	2963,6	2973,5	2980,6	2985,9
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2886,0	2901,5	2909,1	2915,1	2920,3	2931,2	2938,3	2943,3	2947,0
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	204,9	213,2	217,3	220,5	223,4	229,4	233,4	236,3	238,5
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,821	1,005	1,123	1,237	1,35	1,651	1,91	2,129	2,314
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	2,677	2,223	2,005	1,832	1,688	1,395	1,215	1,095	1,012
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,949	7,888	7,852	7,820	7,790	7,720	7,667	7,627	7,596
Temperatura na wylocie z dyfuzora [°C]	tL	214,0	224,5	229,7	233,9	237,6	245,6	251,0	254,9	257,8
Ciśnienie na wylocie z dyfuzora [barA]	pL	0,821	1,005	1,123	1,237	1,350	1,651	1,910	2,129	2,314
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	2,728	2,276	2,057	1,883	1,737	1,442	1,258	1,137	1,051
Stopień suchości na wylocie z dyfuzora [-]	xL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

Tab. Z1.8 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=6,6 barA oraz dla drugiego stopnia p_{s2}=10 barA, stopień eżekcji pierwszego stopnia G_{s1}=0,429

s1=6,6 barA;	б1=0,429	; s2=10 b	arA							
ZAŁOŻO	NY STOPIEI	Ń EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETR	Y PARY ZA	DYSZĄ (N-	N)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	i _{Nizen}	2438,9	2438,9	2438,9	2438,9	2438,9	2438,9	2438,9	2438,9	2438,9
Prędkość za dyszą [m/s]	W _N	1071,1	1071,1	1071,1	1071,1	1071,1	1071,1	1071,1	1071,1	1071,1
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2468,2	2468,2	2468,2	2468,2	2468,2	2468,2	2468,2	2468,2	2468,2
PARAMETRY PARY N	A DOLOCIE	DO DYFU	ZORA (D-I	D)						
Prędkość na wlocie do dyfuzora [m/s]	WD	673,7	748,6	785,7	816,1	842,2	898,3	935,7	962,5	982,5
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2740,5	2716,9	2703,6	2691,8	2681,1	2656,2	2638,2	2624,6	2614,1
Temperatura pary na dolocie do dyfuzora [°C]	t _D	129,27	117,17	110,32	104,30	98.8433	86,21	77,38	77,38	77,38
Objętość pary na dolocie do dyfuzora [m ³ /kg]	V _D	4,34	4,21	4,13	4,06	4,00	3,86	3,76	3,74	3,72
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9998	0,9940	0,9807
Entropia pary na dolocie do dyfuzora [kJ/K kg]	s _D	7,919	7,859	7,825	7,794	7,765	7,697	7,646	7,608	7,578
PARAMETRY F	ARY ZA DY	FUZOREM	(L-L)				-			
Prędkość na wylocie z dyfuzora [m/s]	\mathbf{w}_{L}	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2912,4	2930,9	2940,0	2947,5	2954,0	2967,8	2977,1	2983,6	2988,6
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2895,2	2909,5	2916,4	2922,0	2926,7	2936,7	2943,2	2947,7	2951,1
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	209,8	217,4	221,2	224,2	226,8	232,4	236,1	238,8	240,8
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,914	1,108	1,232	1,35	1,466	1,776	2,041	2,265	2,454
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	2,428	2,033	1,842	1,691	1,564	1,304	1,143	1,034	0,958
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,919	7,859	7,825	7,794	7,765	7,697	7,646	7,608	7,578
Temperatura na wylocie z dyfuzora [°C]	tL	218,5	228,2	233,1	237,1	240,5	247,9	253,0	256,6	259,3
Ciśnienie na wylocie z dyfuzora [barA]	p∟	0,914	1,108	1,232	1,350	1,466	1,776	2,041	2,265	2,454
Objętość właściwa na wylocie z dyfuzora [m3/kg]	v_L	2,473	2,079	1,887	1,735	1,608	1,346	1,182	1,071	0,994
Stopień suchości na wylocie z dyfuzora [-]	xL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	Si	7.954	7.902	7.872	7.844	7.819	7.758	7.712	7.677	7.649

Tab. Z1.9 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=6,6 barA oraz dla drugiego stopnia p_{s2}=10 barA, stopień eżekcji pierwszego stopnia G_{s1}=0,376

s1=6,6 barA; б1=	=0,0,376;	; s2=10 ba	arA							
ZAŁOŻONY S	STOPIEŃ	EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	mx	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY PA	RY ZA D	YSZĄ (N-N)		-				-	
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2458,0	2458,0	2458,0	2458,0	2458,0	2458,0	2458,0	2458,0	2458,0
Prędkość za dyszą [m/s]	W _N	1055,5	1055,5	1055,5	1055,5	1055,5	1055,5	1055,5	1055,5	1055,5
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2486,4	2486,4	2486,4	2486,4	2486,4	2486,4	2486,4	2486,4	2486,4
PARAMETRY PARY NA D		O DYFUZ	ORA (D-D)						1	
Prędkość na wlocie do dyfuzora [m/s]	WD	663,9	737,7	774,2	804,2	829,9	885,2	922,1	948,4	968,2
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2753,7	2730,3	2717,1	2705,5	2695,0	2670,4	2652,7	2639,3	2629,0
Temperatura pary na dolocie do dyfuzora [°C]	t _D	136,33	124,35	117,59	111,65	106,27	93,83	84,91	80,56	80,56
Objętość pary na dolocie do dyfuzora [m ³ /kg]	V _D	3,88	3,76	3,70	3,37	3,59	3,46	3,38	3,33	3,31
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9980	0,9935
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,892	7,834	7,800	7,770	7,743	7,677	7,628	7,590	7,561
PARAMETRY PAR	ZADYF	JZOREM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2919,4	2936,7	2945,3	2952,3	2958,3	2971,3	2980,0	2986,1	2990,8
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2902,8	2916,1	2922,5	2927,6	2932,0	2941,2	2947,2	2951,5	2954,6
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	213,9	222,4	224,4	227,3	229,7	234,9	238,4	240,9	242,7
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	1,002	1,195	1,334	1,456	1,577	1,894	2,162	2,389	2,582
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	2,233	1,904	1,712	1,577	1,462	1,229	1,083	1,016	1,095
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,892	7,834	7,800	7,770	7,743	7,677	7,628	7,590	7,561
Temperatura na wylocie z dyfuzora [°C]	tL	222,2	231,3	235,9	239,6	242,9	249,9	254,6	258,0	206,6
Ciśnienie na wylocie z dyfuzora [barA]	p∟	1,002	1,195	1,334	1,456	1,577	1,894	2,162	2,389	2,582
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	2,272	1,939	1,752	1,617	1,501	1,266	1,118	1,018	1,057
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	SL	7,925	7,879	7,845	7,819	7,794	7,735	7,691	7,657	7,630

Tab. Z1.10 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=6,6 barA oraz dla drugiego stopnia p_{s2}=10 barA, stopień eżekcji pierwszego stopnia G_{s1}=0,333

s1=6,6 barA; 6	1=0,333;	s2=10 ba	rA							
ZAŁOŻONY	STOPIEŃ	EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	m _c	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY P.	ARY ZA D	YSZĄ (N-N)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	i _{Nizen}	2475,2	2475,2	2475,2	2475,2	2475,2	2475,2	2475,2	2475,2	2475,2
Prędkość za dyszą [m/s]	W _N	1041,1	1041,1	1041,1	1041,1	1041,1	1041,1	1041,1	1041,1	1041,1
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2502,7	2502,7	2502,7	2502,7	2502,7	2502,7	2502,7	2502,7	2502,7
PARAMETRY PARY NA D	OLOCIE I	DO DYFUZ	ORA (D-D)				-			
Prędkość na wlocie do dyfuzora [m/s]	WD	654,9	727,6	763,7	793,2	818,6	873,2	909,5	935,5	955,0
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2765,3	2742,1	2729,1	2717,6	2707,2	2683,0	2665,5	2652,4	2642,2
Temperatura pary na dolocie do dyfuzora [°C]	t _D	142,49	130,65	123,98	118,13	112,83	100,57	91,79	85,25	83,43
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	3,51	3,41	3,35	3,30	3,25	3,15	3,07	3,01	2,99
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9972
Entropia pary na dolocie do dyfuzora [kJ/K kg]	S _D	7,867	7,810	7,778	7,749	7,722	7,658	7,611	7,575	7,546
PARAMETRY PAR	Y ZA DYF	UZOREM (L-L)				-			
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	i	2925,4	2941,7	2949,8	2956,4	2962,1	2974,3	2982,4	2988,3	2992,6
Entalpia przy sprężaniu izentropowym [kJ/kg]	i _{Lizen}	2909,4	2921,7	2927,7	2932,5	2936,6	2945,2	2950,8	2954,7	2957,6
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	217,3	224,0	227,2	229,9	232,2	237,0	240,3	242,7	244,4
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	1,089	1,3	1,433	1,559	1,682	2,006	2,278	2,507	2,702
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	2,069	1,755	1,602	1,480	1,377	1,165	1,031	0,941	0,875
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,867	7,810	7,778	7,749	7,722	7,658	7,611	7,575	7,546
Temperatura na wylocie z dyfuzora [°C]	tL	225,4	234,0	238,3	241,9	244,9	251,5	256,0	259,3	261,7
Ciśnienie na wylocie z dyfuzora [barA]	pL	1,089	1,300	1,433	1,559	1,682	2,006	2,278	2,507	2,702
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	2,103	1,791	1,638	1,516	1,413	1,199	1,064	0,972	0,906
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [k]/K kg]	S.	7.899	7.850	7.821	7,796	7.772	7.714	7.672	7.639	7.613

Tab. Z1.11 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=6,6$ barA oraz dla drugiego stopnia $p_{s2}=10$ barA, stopień eżekcji pierwszego stopnia $G_{s1}=0,250$

s1=6,6 barA; 61	=0,250;	s2=10 bai	rA							
ZAŁOŻONY S	STOPIEŃ	EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	mx	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY PA	RY ZA D	YSZĄ (N-N)		-				-	
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2514,4	2514,4	2514,4	2514,4	2514,4	2514,4	2514,4	2514,4	2514,4
Prędkość za dyszą [m/s]	W _N	1006,8	1006,8	1006,8	1006,8	1006,8	1006,8	1006,8	1006,8	1006,8
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2539,9	2539,9	2539,9	2539,9	2539,9	2539,9	2539,9	2539,9	2539,9
PARAMETRY PARY NA D		O DYFUZ	ORA (D-D)			1			1	
Prędkość na wlocie do dyfuzora [m/s]	WD	633,3	703,7	738,5	767,1	791,6	844,4	879,6	904,7	923,6
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2790,6	2768,1	2755,5	2744,4	2734,4	2711,1	2694,4	2681,8	2672,0
Temperatura pary na dolocie do dyfuzora [°C]	t _D	156,06	144,59	138,17	132,53	127,44	115,69	107,27	100,99	966,14
Objętość pary na dolocie do dyfuzora [m³/kg]	V _D	2,80	2,73	2,68	2,64	2,61	2,53	2,47	2,43	2,40
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,809	7,756	7,726	7,698	7,674	7,615	7,571	7,538	7,511
PARAMETRY PARY	ZA DYFU	JZOREM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2938,2	2952,4	2959,4	2965,2	2970,1	2980,7	2987,8	2992,9	2996,7
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2923,5	2934,0	2939,0	2943,1	2946,5	2953,8	2958,5	2961,7	2964,2
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	224,9	230,6	233,4	235,7	237,6	241,8	244,6	246,7	248,2
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	1,314	1,544	1,686	1,821	1,951	2,289	2,568	2,8	2,999
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	1,740	1,496	1,377	1,281	1,199	1,030	0,922	0,848	0,794
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,809	7,756	7,726	7,698	7,674	7,615	7,571	7,538	7,511
Temperatura na wylocie z dyfuzora [°C]	tL	232,3	239,8	243,6	246,7	249,4	255,2	259,1	262,0	264,2
Ciśnienie na wylocie z dyfuzora [barA]	pL	1,314	1,544	1,686	1,821	1,951	2,289	2,568	2,800	2,999
Objętość właściwa na wylocie z dyfuzora [m3/kg]	v _L	1,766	1,525	1,406	1,309	1,228	1,057	0,949	0,874	0,819
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	SL	7,839	7,792	7,766	7,741	7,719	7,666	7,627	7,597	7,572

Tab. Z1.12 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=6,6$ barA oraz dla drugiego stopnia $p_{s2}=10$ barA, stopień eżekcji pierwszego stopnia $\delta_{s1}=0,200$

s1=6,6 barA; 62	L=0,200;	s2=10 ba	rA							
ZAŁOŻONY	STOPIEŃ	EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY P/	ARY ZA D	YSZĄ (N-N)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	i _{Nizen}	2542,3	2542,3	2542,3	2542,3	2542,3	2542,3	2542,3	2542,3	2542,3
Prędkość za dyszą [m/s]	W _N	981,1	981,1	981,1	981,1	981,1	981,1	981,1	981,1	981,1
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2566,4	2566,4	2566,4	2566,4	2566,4	2566,4	2566,4	2566,4	2566,4
PARAMETRY PARY NA D	OLOCIE E	DO DYFUZ	ORA (D-D)							
Prędkość na wlocie do dyfuzora [m/s]	WD	617,1	685,7	719,7	747,5	771,4	822,9	857,1	881,6	900,0
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2808,0	2786,0	2773,7	2763,0	2753,2	2730,7	2714,5	2702,4	2692,9
Temperatura pary na dolocie do dyfuzora [°C]	t _D	165,33	154,19	147,96	142,51	137,59	126,24	118,12	112,06	107,37
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	2,39	2,33	2,30	2,27	2,24	2,17	2,13	2,01	2,07
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
Entropia pary na dolocie do dyfuzora [kJ/K kg]	s _D	7,767	7,717	7,688	7,662	7,639	7,583	7,542	7,511	7,486
PARAMETRY PAR	Y ZA DYFI	JZOREM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2946,8	2959,5	2965,9	2971,0	2975,5	2985,0	2991,4	2995,9	2999,3
Entalpia przy sprężaniu izentropowym [kJ/kg]	i _{Lizen}	2932,9	2942,2	2946,6	2950,2	2953,2	2959,6	2963,7	2966,6	2968,7
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	230,0	235,1	237,6	239,6	241,4	245,1	247,6	249,4	250,8
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	1,499	1,743	1,892	2,032	2,167	2,514	2,797	3,032	3,23
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	1,540	1,337	1,237	1,156	1,087	0,943	0,851	0,787	0,740
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,767	7,717	7,688	7,662	7,639	7,583	7,542	7,511	7,486
Temperatura na wylocie z dyfuzora [°C]	tL	237,0	243,8	247,2	250,0	252,4	257,7	261,3	263,9	265,8
Ciśnienie na wylocie z dyfuzora [barA]	pL	1,499	1,743	1,892	2,032	2,167	2,514	2,797	3,032	3,230
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	1,562	1,360	1,261	1,180	1,111	0,966	0,874	0,991	0,762
Stopień suchości na wylocie z dyfuzora [-]	xL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	S,	7.795	7.751	7.725	7,702	7.681	7.631	7.595	7.566	7,544

Tab. Z1.13 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=6,6$ barA oraz dla drugiego stopnia $p_{s2}=10$ barA, stopień eżekcji pierwszego stopnia $G_{s1}=0,167$

s1=6,6 barA; 61	.=0,167;	s2=10 bai	A							
ZAŁOŻONY S	STOPIEŃ	EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	mx	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	6	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY PA	RY ZA D	YSZĄ (N-N)		-				-	
Entalpia przy izentropowym rozprężaniu [kJ/kg]	i _{Nizen}	2563,4	2563,4	2563,4	2563,4	2563,4	2563,4	2563,4	2563,4	2563,4
Prędkość za dyszą [m/s]	W _N	960,8	960,8	960,8	960,8	960,8	960,8	960,8	960,8	960,8
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2586,5	2586,5	2586,5	2586,5	2586,5	2586,5	2586,5	2586,5	2586,5
PARAMETRY PARY NA D		O DYFUZ	ORA (D-D)			1			1	
Prędkość na wlocie do dyfuzora [m/s]	WD	604,4	671,6	704,8	732,1	755,5	805,9	839,5	863,4	881,4
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2820,6	2799,2	2787,2	2776,7	2767,2	2745,3	2729,6	2717,8	2708,6
Temperatura pary na dolocie do dyfuzora [°C]	t _D	172,13	161,26	155,20	149,90	145,12	134,11	126,23	120,35	115,81
Objętość pary na dolocie do dyfuzora [m ³ /kg]	V _D	2,13	2,08	2,05	2,02	2,00	1,94	1,90	1,87	1,85
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,735	7,687	7,659	7,634	7,612	7,559	7,520	7,490	7,466
PARAMETRY PARY	ZA DYFU	JZOREM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2952,9	2964,6	2970,5	2975,2	2979,3	2988,1	2993,9	2998,1	3001,2
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2939,7	2948,1	2952,1	2955,4	2958,1	2963,8	2967,5	2970,1	2972,0
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	233,7	238,3	240,6	242,5	244,1	247,5	249,6	241,5	252,7
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	1,6558	1,907	2,064	2,208	2,346	2,699	2,969	3,222	3,418
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	1,403	1,229	1,140	1,069	1,009	0,882	0,804	0,743	0,702
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,735	7,687	7,659	7,634	7,612	7,559	7,520	7,490	7,466
Temperatura na wylocie z dyfuzora [°C]	tL	240,3	246,6	249,7	252,3	254,6	259,5	262,8	265,2	267,0
Ciśnienie na wylocie z dyfuzora [barA]	p∟	1,656	1,907	2,064	2,208	2,346	2,699	2,969	3,222	3,418
Objętość właściwa na wylocie z dyfuzora [m3/kg]	v_L	1,422	1,249	1,161	1,090	1,030	0,903	0,825	0,763	0,722
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	SL	7,761	7,719	7,694	7,672	7,652	7,605	7,572	7,763	7,521

Tab. Z1.14 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=6,6$ barA oraz dla drugiego stopnia $p_{s2}=10$ barA, stopień eżekcji pierwszego stopnia $G_{s1}=0,143$

s1=6,6 barA; б	1=0,143;	s2=10 ba	rA							
ZAŁOŻONY	STOPIEŃ	EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	m _c	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	6	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY P	ARY ZA D	YSZĄ (N-N)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2579,7	2579,7	2579,7	2579,7	2579,7	2579,7	2579,7	2579,7	2579,7
Prędkość za dyszą [m/s]	W _N	944,7	944,7	944,7	944,7	944,7	944,7	944,7	944,7	944,7
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2602,0	2602,0	2602,0	2602,0	2602,0	2602,0	2602,0	2602,0	2602,0
PARAMETRY PARY NA I	OLOCIE	DO DYFUZ	ORA (D-D							
Prędkość na wlocie do dyfuzora [m/s]	WD	594,2	660,3	693,0	719,8	742,8	792,3	825,3	848,9	866,6
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2830,2	2809,2	2797,4	2787,2	2777,9	2756,5	2741,1	2729,6	2720,6
Temperatura pary na dolocie do dyfuzora [°C]	t _D	177,28	166,65	160,72	155,55	150,88	140,13	132,45	126,72	122,29
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	1,95	1,90	1,87	1,85	1,83	1,78	1,75	1,72	1,70
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
Entropia pary na dolocie do dyfuzora [kJ/K kg]	S _D	7,710	7,663	7,636	7,612	7,591	7,540	7,502	7,473	7,451
PARAMETRY PAR	Y ZA DYF	UZOREM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2957,5	2968,5	2973,9	2978,3	2982,2	2990,4	2995,8	2999,7	3002,7
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2944,8	2952,5	2956,3	2959,2	2961,7	2967,0	2970,4	2972,7	2974,5
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	236,5	240,8	242,9	244,6	246,1	249,3	251,5	253,0	254,2
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	1,787	2,048	2,206	2,353	2,494	2,851	3,14	3,376	3,572
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m³/kg]	V _{L izen}	1,307	1,149	1,071	1,007	0,952	0,837	0,763	0,711	0,673
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,710	7,663	7,636	7,612	7,591	7,540	7,502	7,473	7,451
Temperatura na wylocie z dyfuzora [°C]	tL	242,8	248,7	251,7	254,1	256,2	260,8	264,0	266,3	268,0
Ciśnienie na wylocie z dyfuzora [barA]	pL	1,787	2,048	2,206	2,353	2,494	2,851	3,140	3,376	3,572
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	1,324	1,168	1,090	1,026	0,972	0,857	0,782	0,730	0,692
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	S,	7.735	7.694	7.670	7.649	7.630	7.584	7.550	7,524	7.504

Z1.2.2. Układ szeregowy – Para zasilająca inżektor pierwszego stopnia p_{s1}=3,0 barA, inżektor drugiego stopnia p_{s2}=10 barA

Tab. Z1.15 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=3,0 barA oraz dla drugiego stopnia p_{s2}=10 barA, stopień eżekcji pierwszego stopnia G_{s1}=0,500

s1=3.0 barA: 61	=0 500	s2=10 ha	rA							
	STOPIEŃ	EŻEKCII								
Strumień masy pary zasysanej [kg/s]	mx	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY PA	ARY ZA D	YSZĄ (N-N)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2374,2	2374,2	2374,2	2374,2	2374,2	2374,2	2374,2	2374,2	2374,2
Prędkość za dyszą [m/s]	W _N	1120,6	1120,6	1120,6	1120,6	1120,6	1120,6	1120,6	1120,6	1120,6
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2406,7	2406,7	2406,7	2406,7	2406,7	2406,7	2406,7	2406,7	2406,7
PARAMETRY PARY NA D	OLOCIE I	DO DYFUZ	ORA (D-D)							
Prędkość na wlocie do dyfuzora [m/s]	WD	704,9	783,2	822,0	853,8	881,1	939,9	979,0	1007,0	1028,0
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2672,9	2652,5	2640,5	2629,8	2619,9	2596,7	2579,6	2566,6	2556,5
Temperatura pary na dolocie do dyfuzora [°C]	t _D	93,60	83,06	76,92	71,45	66,78	66,78	66,78	66,78	66,78
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	6,22	6,04	5,93	5,83	5,75	5,69	5,65	5,62	5,59
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	0,9997	0,9898	0,9761	0,9770	0,9663
Entropia pary na dolocie do dyfuzora [kJ/K kg]	s _D	7,951	7,894	7,860	7,829	7,800	7,732	7,682	7,644	7,614
PARAMETRY PAR	ZA DYF	UZOREM (L-L)	-			-			
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2866,6	2892,7	2905,6	2916,2	2925,3	2944,9	2958,0	2967,3	2974,3
Entalpia przy sprężaniu izentropowym [kJ/kg]	i _{Lizen}	2847,2	2868,7	2879,1	2887,6	2894,8	2910,1	2920,1	2927,2	2932,5
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	184,9	196,2	201,8	206,3	210,2	218,5	224,0	227,9	2320,9
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,682	0,853	0,964	1,072	1,179	1,465	1,709	1,915	2,092
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	3,087	2,528	2,263	2,053	1,881	1,539	1,333	1,198	1,103
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,951	7,894	7,860	7,829	7,800	7,732	7,682	7,644	7,614
Temperatura na wylocie z dyfuzora [°C]	tL	194,7	208,4	215,2	220,8	225,6	235,9	242,9	247,9	251,7
Ciśnienie na wylocie z dyfuzora [barA]	pL	0,682	0,853	0,964	1,072	1,179	1,465	1,709	1,915	2,092
Objętość właściwa na wylocie z dyfuzora [m3/kg]	V _L	3,155	2,595	2,328	2,117	1,943	1,595	1,385	1,247	1,150
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	SL	7,993	7,945	7,915	7,888	7,863	7,802	7,757	7,722	7,695

Tab. Z1.16 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=3,0$ barA oraz dla drugiego stopnia $p_{s2}=10$ barA, stopień eżekcji pierwszego stopnia $G_{s1}=0,429$

s1=3,0 barA; 61	=0,429;	s2=10 ba	rA							
ZAŁOŻONY S	STOPIEŃ	EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	mx	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY PA	RY ZA D	YSZĄ (N-N)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2392,2	2392,2	2392,2	2392,2	2392,2	2392,2	2392,2	2392,2	2392,2
Prędkość za dyszą [m/s]	W _N	1107,3	1107,3	1107,3	1107,3	1107,3	1107,3	1107,3	1107,3	1107,3
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2423,8	2423,8	2423,8	2423,8	2423,8	2423,8	2423,8	2423,8	2423,8
PARAMETRY PARY NA D		O DYFUZ	ORA (D-D)						1	
Prędkość na wlocie do dyfuzora [m/s]	WD	696,5	773,9	812,3	843,7	870,7	928,7	967,4	995,0	1015,8
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2685,7	2665,4	2653,5	2642,9	2633,2	2610,2	2593,4	2580,6	2570,7
Temperatura pary na dolocie do dyfuzora [°C]	t _D	100,43	89,98	83,90	78,49	73,54	69,70	69,70	69,70	69,70
Objętość pary na dolocie do dyfuzora [m ³ /kg]	V _D	5,57	5,41	5,32	5,24	5,16	5,07	5,03	5,00	4,98
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	0,9934	0,9862	0,9807	0,9696
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,926	7,871	7,838	7,808	7,780	7,714	7,665	7,627	7,598
PARAMETRY PARY	ZA DYFU	JZOREM (L-L)			1				
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2873,3	2898,2	2910,6	2920,8	2929,5	2948,2	2960,7	2969,6	2976,3
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2854,5	2875,0	2884,9	2893,0	2899,9	2914,4	2924,0	2930,7	2935,8
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	188,7	199,6	204,9	209,2	212,9	220,8	226,1	229,9	232,7
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,744	0,923	1,038	1,15	1,26	1,555	1,806	2,015	2,196
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	2,853	2,352	2,115	1,925	1,770	1,456	1,266	1,143	1,054
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,926	7,871	7,838	7,808	7,780	7,714	7,665	7,627	7,598
Temperatura na wylocie z dyfuzora [°C]	tL	198,3	211,4	217,9	223,2	227,8	237,8	244,5	249,2	252,9
Ciśnienie na wylocie z dyfuzora [barA]	pL	0,744	0,923	1,038	1,150	1,260	1,555	1,806	2,015	2,196
Objętość właściwa na wylocie z dyfuzora [m3/kg]	v _L	2,913	2,412	2,173	1,982	1,826	1,507	1,314	1,188	1,097
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	SL	7,967	7,920	7,891	7,865	7,840	7,781	7,737	7,704	7,677

Tab. Z1.17 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=3,0$ barA oraz dla drugiego stopnia $p_{s2}=10$ barA, stopień eżekcji pierwszego stopnia $G_{s1}=0,376$

s1=3,0 barA; 61	=0,0,376	; s2=10 ba	arA							
ZAŁOŻONY	STOPIEŃ	EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY P	ARY ZA D	YSZĄ (N-N)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	i _{Nizen}	2408,3	2408,3	2408,3	2408,3	2408,3	2408,3	2408,3	2408,3	2408,3
Prędkość za dyszą [m/s]	W _N	1095,0	1095,0	1095,0	1095,0	1095,0	1095,0	1095,0	1095,0	1095,0
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2439,2	2439,2	2439,2	2439,2	2439,2	2439,2	2439,2	2439,2	2439,2
PARAMETRY PARY NA D	OLOCIE I	DO DYFUZ	ORA (D-D)							
Prędkość na wlocie do dyfuzora [m/s]	WD	688,8	765,4	803,3	834,4	861,0	918,4	956,7	984,0	1004,5
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2696,6	2676,5	2664,8	2654,3	2644,7	2622,1	2605,5	2593,0	2583,2
Temperatura pary na dolocie do dyfuzora [°C]	t _D	106,26	95,94	89,95	84,61	79,73	72,34	72,34	72,34	72,34
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	5,05	4,91	4,83	4,76	4,69	4,57	4,54	4,51	4,49
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	0,9966	0,9895	0,9841	0,9798
Entropia pary na dolocie do dyfuzora [kJ/K kg]	s _D	7,903	7,850	7,818	7,788	7,761	7,696	7,649	7,612	7,584
PARAMETRY PAR	Y ZA DYF	UZOREM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2878,7	2902,8	2914,7	2924,5	2932,9	2951,0	2963,0	2971,6	2978,0
Entalpia przy sprężaniu izentropowym [kJ/kg]	i _{Lizen}	2860,5	2880,2	2889,7	2897,5	2904,1	2918,1	2927,2	2933,7	2938,6
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	191,9	202,4	207,5	211,6	215,2	222,8	227,9	231,6	234,3
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,805	0,992	1,11	1,225	1,338	1,641	1,896	2,112	2,294
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	2,655	2,201	1,988	1,816	1,674	1,385	1,210	1,094	1,012
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,903	7,850	7,818	7,788	7,761	7,696	7,649	7,612	7,584
Temperatura na wylocie z dyfuzora [°C]	tL	201,2	213,8	220,1	225,2	229,7	239,3	245,7	250,4	253,9
Ciśnienie na wylocie z dyfuzora [barA]	pL	0,805	0,992	1,110	1,225	1,338	1,641	1,896	2,112	2,294
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	2,708	2,255	2,041	1,868	1,725	1,432	1,255	1,136	1,052
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [k]/K kg]	S.	7,942	7.896	7.869	7.844	7.820	7,762	7,719	7.686	7.660

Tab. Z1.18 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=3,0$ barA oraz dla drugiego stopnia $p_{s2}=10$ barA, stopień eżekcji pierwszego stopnia $G_{s1}=0,333$

s1=3,0 barA; б1=	=0,0,333;	; s2=10 ba	ırA										
ZAŁOŻONY STOPIEŃ EŻEKCJI Strumień masy pary zasysanej [kg/s] m _X 1 <th colspan="3</td>													
Strumień masy pary zasysanej [kg/s]	mx	1	1	1	1	1	1	1	1	1			
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7			
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143			
PARAMETRY PA	RY ZA D	YSZĄ (N-N)						-				
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2422,2	2422,2	2422,2	2422,2	2422,2	2422,2	2422,2	2422,2	2422,2			
Prędkość za dyszą [m/s]	W _N	1084,3	1084,3	1084,3	1084,3	1084,3	1084,3	1084,3	1084,3	1084,3			
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2452,4	2452,4	2452,4	2452,4	2452,4	2452,4	2452,4	2452,4	2452,4			
PARAMETRY PARY NA D		O DYFUZ	ORA (D-D)						1				
Prędkość na wlocie do dyfuzora [m/s]	WD	682,0	757,8	795,4	826,1	852,5	909,4	947,3	974,3	994,6			
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2705,9	2686,0	2674,4	2664,1	2654,6	2632,3	2616,0	2603,6	2593,9			
Temperatura pary na dolocie do dyfuzora [°C]	t _D	111,26	101,05	95,13	89,86	85,04	74,63	74,63	74,63	74,63			
Objętość pary na dolocie do dyfuzora [m ³ /kg]	V _D	4,65	4,52	4,45	4,38	4,32	4,19	4,16	4,13	4,12			
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	0,9993	0,9922	0,9869	0,9748			
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,883	7,831	7,800	7,771	7,745	7,682	7,635	7,599	7,571			
PARAMETRY PAR	ZADYF	JZOREM (L-L)										
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60			
Entalpia pary za dyfuzorem [kJ/kg]	iL	2883,4	2906,7	2918,2	2927,7	2935,8	2953,3	2964,9	2973,3	2979,5			
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2865,6	2884,6	2893,9	2901,3	2907,7	2921,2	2930,0	2936,3	2940,9			
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	194,7	204,8	209,7	213,7	217,2	224,5	229,5	233,0	235,6			
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,861	1,054	1,176	1,293	1,409	1,718	1,978	2,197	2,382			
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	2,496	2,082	1,884	1,728	1,596	1,327	1,163	1,054	1,024			
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000			
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,883	7,831	7,800	7,771	7,745	7,682	7,635	7,599	7,571			
Temperatura na wylocie z dyfuzora [°C]	tL	203,7	215,9	222,0	227,0	231,3	240,6	246,9	251,3	254,7			
Ciśnienie na wylocie z dyfuzora [barA]	p∟	0,861	1,054	1,176	1,293	1,409	1,718	1,978	2,197	2,382			
Objętość właściwa na wylocie z dyfuzora [m3/kg]	vL	2,545	2,131	1,933	1,776	1,643	1,371	1,205	1,094	1,015			
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000			
Entropia na wylocie z dyfuzora [kJ/K kg]	SL	7,921	7,876	7,849	7,825	7,802	7,745	7,703	7,671	7,646			

Tab. Z1.19 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=3,0$ barA oraz dla drugiego stopnia $p_{s2}=10$ barA, stopień eżekcji pierwszego stopnia $G_{s1}=0,250$

s1=3,0 barA; б	1=0,250;	s2=10 ba	rA							
ZAŁOŻONY	STOPIEŃ	EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	m _c	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY P	ARY ZA D	YSZĄ (N-N)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2453,7	2453,7	2453,7	2453,7	2453,7	2453,7	2453,7	2453,7	2453,7
Prędkość za dyszą [m/s]	W _N	1059,0	1059,0	1059,0	1059,0	1059,0	1059,0	1059,0	1059,0	1059,0
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2482,2	2482,2	2482,2	2482,2	2482,2	2482,2	2482,2	2482,2	2482,2
PARAMETRY PARY NA I	OLOCIE	DO DYFUZ	ORA (D-D)				-			
Prędkość na wlocie do dyfuzora [m/s]	WD	666,2	740,2	776,9	806,9	832,7	888,2	925,2	951,7	971,5
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2726,3	2707,0	2695,8	2685,7	2676,6	2655,0	2639,2	2627,3	2618,0
Temperatura pary na dolocie do dyfuzora [°C]	t _D	122,22	112,32	106,60	101,50	96,84	85,96	79,84	79,84	79,84
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	3,85	3,75	3,70	3,65	3,60	3,49	3,42	3,40	3,39
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9985	0,9933	0,9893
Entropia pary na dolocie do dyfuzora [kJ/K kg]	s _D	7,837	7,787	7,758	7,732	7,707	7,648	7,603	7,570	7,543
PARAMETRY PAR	Y ZA DYF	UZOREM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2893,4	2915,1	2925,8	2934,6	2942,1	2958,3	2969,1	2976,9	2982,7
Entalpia przy sprężaniu izentropowym [kJ/kg]	i _{Lizen}	2876,7	2894,3	2902,8	2909,7	2915,5	2928,0	2936,1	2941,9	2946,2
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	200,7	210,0	214,5	218,3	221,5	228,3	232,9	236,1	238,6
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	1,004	1,21	1,34	1,464	1,586	1,905	2,175	2,4	2,59
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	2,167	1,832	1,670	1,539	1,429	1,203	1,527	0,970	0,903
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,837	7,787	7,758	7,732	7,707	7,648	7,603	7,570	7,543
Temperatura na wylocie z dyfuzora [°C]	tL	209,1	220,5	226,1	230,8	234,8	243,4	249,3	253,5	256,6
Ciśnienie na wylocie z dyfuzora [barA]	pL	1,004	1,210	1,340	1,464	1,586	1,905	2,175	2,400	2,590
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	2,206	1,873	1,710	1,579	1,469	1,243	1,100	1,004	0,936
Stopień suchości na wylocie z dyfuzora [-]	xL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	S,	7.871	7.830	7.805	7.782	7,760	7,707	7.668	7.637	7.613

Tab. Z1.20 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=3,0$ barA oraz dla drugiego stopnia $p_{s2}=10$ barA, stopień eżekcji pierwszego stopnia $G_{s1}=0,200$

s1=3,0 barA; 61	=0,200;	s2=10 bar	A									
ZAŁÓŻONY STOPIEŃ EŻEKCJI Strumień masy pary zasysanej [kg/s] m _X 1 1												
Strumień masy pary zasysanej [kg/s]	mx	1	1	1	1	1	1	1	1	1		
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7		
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143		
PARAMETRY PA	RY ZA D	YSZĄ (N-N)		-				-			
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2476,0	2476,0	2476,0	2476,0	2476,0	2476,0	2476,0	2476,0	2476,0		
Prędkość za dyszą [m/s]	W _N	1040,4	1040,4	1040,4	1040,4	1040,4	1040,4	1040,4	1040,4	1040,4		
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2503,5	2503,5	2503,5	2503,5	2503,5	2503,5	2503,5	2503,5	2503,5		
PARAMETRY PARY NA D		O DYFUZ	ORA (D-D)						1			
Prędkość na wlocie do dyfuzora [m/s]	WD	654,4	727,1	763,2	792,7	818,0	872,6	908,9	934,9	954,4		
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2740,3	2721,4	2710,5	2700,7	2691,8	2670,8	2655,5	2643,9	2634,8		
Temperatura pary na dolocie do dyfuzora [°C]	t _D	129,73	120,09	114,52	109,57	105,05	94,47	86,82	83,57	83,57		
Objętość pary na dolocie do dyfuzora [m ³ /kg]	V _D	3,38	3,30	3,25	3,21	3,17	3,07	3,01	2,97	2,96		
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9978	0,9836		
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,803	7,756	7,728	7,703	7,679	7,623	7,581	7,548	7,523		
PARAMETRY PAR	ZADYF	JZOREM (L-L)									
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60		
Entalpia pary za dyfuzorem [kJ/kg]	iL	2900,1	2920,7	2930,8	2939,1	2946,3	2961,7	2971,9	2979,3	2984,7		
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2884,2	2900,7	2908,8	2915,3	2920,8	2932,6	2940,3	2945,7	2949,8		
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	204,7	213,5	217,8	221,4	224,4	230,9	235,2	238,3	240,7		
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	1,116	1,334	1,477	1,599	1,725	2,053	2,326	2,556	2,75		
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	1,965	1,673	1,524	1,417	1,321	1,124	1,000	0,915	0,853		
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000		
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,803	7,756	7,728	7,703	7,679	7,623	7,581	7,548	7,523		
Temperatura na wylocie z dyfuzora [°C]	tL	212,7	223,5	228,9	233,3	237,1	245,3	250,9	254,9	257,9		
Ciśnienie na wylocie z dyfuzora [barA]	p∟	1,116	1,334	1,477	1,599	1,725	2,053	2,326	2,556	2,750		
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	1,999	1,709	1,559	1,453	1,356	1,157	1,032	0,945	0,883		
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000		
Entropia na wylocie z dyfuzora [kJ/K kg]	SL	7,837	7,797	7,770	7,750	7,730	7,680	7,642	7,613	7,590		

Tab. Z1.21 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=3,0$ barA oraz dla drugiego stopnia $p_{s2}=10$ barA, stopień eżekcji pierwszego stopnia $G_{s1}=0,167$

s1=3,0 bar	А; б1=0,2	L67; s2=1	0 barA							
ZAŁOŻ	ONY STOP	PIEŃ EŻEKO	CUI							
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	6	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMET	RY PARY	ZA DYSZĄ	(N-N)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	i _{Nizen}	2492,8	2492,8	2492,8	2492,8	2492,8	2492,8	2492,8	2492,8	2492,8
Prędkość za dyszą [m/s]	W _N	1025,9	1025,9	1025,9	1025,9	1025,9	1025,9	1025,9	1025,9	1025,9
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2519,4	2519,4	2519,4	2519,4	2519,4	2519,4	2519,4	2519,4	2519,4
PARAMETRY PARY	NA DOLO	CIE DO DY	FUZORA (D-D)						
Prędkość na wlocie do dyfuzora [m/s]	WD	645,3	717,0	752,6	781,7	806,7	860,5	896,3	921,9	941,1
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2750,5	2732,0	2721,3	2711,8	2703,0	2682,5	2667,6	2656,3	2647,4
Temperatura pary na dolocie do dyfuzora [°C]	t _D	135,21	125,79	120,36	115,52	111,11	100,78	93,30	87,69	86,39
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	3,07	2,99	2,95	2,91	2,88	2,80	2,74	2,70	2,68
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9973
Entropia pary na dolocie do dyfuzora [kJ/K kg]	s _D	7,778	7,732	7,705	7,681	7,658	7,604	7,563	7,532	7,508
PARAMETRY	PARY ZA	DYFUZOR	EM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	wL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2904,9	2924,6	2934,4	2942,4	2949,3	2964,1	2973,9	2981,0	2986,2
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2889,5	2905,4	2913,1	2919,4	2924,7	2935,9	2943,3	2948,5	2952,4
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	207,6	216,1	220,2	223,6	226,5	232,8	239,9	239,9	242,2
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	1,21	1,437	1,576	1,708	1,837	2,171	2,448	2,679	2,874
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	1,823	1,561	1,435	1,333	1,246	1,066	0,953	0,875	0,819
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,778	7,732	7,705	7,681	7,658	7,604	7,563	7,532	7,508
Temperatura na wylocie z dyfuzora [°C]	tL	215,4	225,7	230.891	235,1	238,8	246,7	252,1	255,9	258,8
Ciśnienie na wylocie z dyfuzora [barA]	pL	1,210	1,437	1,576	1,708	1,837	2,171	2,448	2,679	2,874
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	1,853	1,593	1,467	1,364	1,277	1,097	0,982	0,903	0,846
Stopień suchości na wylocie z dyfuzora [-]	xL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	S ₁	7,809	7,770	7,748	7,726	7,707	7,659	7,623	7,595	7,572

Tab. Z1.22 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=3,0$ barA oraz dla drugiego stopnia $p_{s2}=10$ barA, stopień eżekcji pierwszego stopnia $G_{s1}=0,143$

s1=3,0 bar/	, б1=0,1	43; s2=10) barA							
ZAŁOŻ	ONY STOP	IEŃ EŻEKC	ມເ							
Strumień masy pary zasysanej [kg/s]	mx	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMET	RY PARY Z	A DYSZĄ (N-N)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	i _{Nizen}	2505,6	2505,6	2505,6	2505,6	2505,6	2505,6	2505,6	2505,6	2505,6
Prędkość za dyszą [m/s]	W _N	1014,7	1014,7	1014,7	1014,7	1014,7	1014,7	1014,7	1014,7	1014,7
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2531,5	2531,5	2531,5	2531,5	2531,5	2531,5	2531,5	2531,5	2531,5
PARAMETRY PARY	NA DOLO	CIE DO DY	FUZORA (D	-D)						
Prędkość na wlocie do dyfuzora [m/s]	WD	638,3	709,2	744,3	773,1	797,9	851,0	886,5	911,8	930,8
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2758,1	2740,0	2729,5	2720,1	2711,5	2691,4	2676,7	2665,6	2656,9
Temperatura pary na dolocie do dyfuzora [°C]	t _D	139,34	130,09	124,76	120,01	115,68	105,56	98,22	92,73	88,55
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	2,85	2,78	2,75	2,71	2,68	2,61	2,55	2,51	2,48
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9999
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,758	7,714	7,687	7,664	7,642	7,589	7,550	7,520	7,496
PARAMETRY	PARY ZA	DYFUZORE	EM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2908,5	2927,6	2937,1	2944,9	2951,5	2965,9	2975,4	2982,2	2987,4
Entalpia przy sprężaniu izentropowym [kJ/kg]	i _{Lizen}	2893,5	2908,9	2916,3	2922,4	2927,5	2938,4	2945,6	2950,6	2954,3
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	209,8	218,0	222,0	225,3	228,1	234,2	238,2	241,1	243,3
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	1,285	1,517	1,661	1,797	1,927	2,265	2,544	2,774	2,972
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	1,724	1,484	1,366	1,271	1,191	1,025	1,088	0,847	0,793
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,758	7,714	7,687	7,664	7,642	7,589	7,550	7,520	7,496
Temperatura na wylocie z dyfuzora [°C]	tL	217,3	227,4	232,4	236,5	240,1	247,8	253,0	2565,7	259,6
Ciśnienie na wylocie z dyfuzora [barA]	pL	1,285	1,517	1,661	1,797	1,927	2,265	2,544	2,774	2,972
Objętość właściwa na wylocie z dyfuzora [m3/kg]	V _L	1,752	1,513	1,395	1,300	1,220	1,053	0,946	0,874	0,819
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	SI	7,789	7,752	7,729	7,708	7,689	7,643	7,608	7,581	7,559

Z1.2.3. Układ szeregowy – Para zasilająca inżektor pierwszego stopnia p_{s1}=6,6 barA, inżektor drugiego stopnia p_{s2}=6,6 barA

Tab. Z1.23 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=6,6 barA oraz dla drugiego stopnia p_{s2}=6,6 barA, stopień eżekcji pierwszego stopnia G_{s1}=0,667

s1=6,6barA; 61	=0,667;	s2=6,6 baı	rA							
ZAŁOŻONY S	TOPIEŃ	EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	mx	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY PA	RY ZA D	YSZĄ (N-N)		-				-	
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2385,9	2385,9	2385,9	2385,9	2385,9	2385,9	2385,9	2385,9	2385,9
Prędkość za dyszą [m/s]	WN	1031,7	1031,7	1031,7	1031,7	1031,7	1031,7	1031,7	1031,7	1031,7
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2413,8	2413,8	2413,8	2413,8	2413,8	2413,8	2413,8	2413,8	2413,8
PARAMETRY PARY NA D		O DYFUZ	ORA (D-D)		-				-	
Prędkość na wlocie do dyfuzora [m/s]	WD	649,0	721,1	756,8	786,1	811,2	865,3	901,4	927,1	946,4
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2670,6	2648,1	2635,3	2624,1	2614,0	2590,3	2573,3	2560,5	2550,5
Temperatura pary na dolocie do dyfuzora [°C]	t _D	92,42	80,83	74,31	68,62	67,03	67,03	67,03	67,03	67,03
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	6,13	5,93	5,82	5,72	5,68	5,62	5,58	5,55	5,52
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	0,9970	0,9869	0,9796	0,9741	0,9699
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,939	7,877	7,840	7,808	7,778	7,709	7,658	7,621	7,591
PARAMETRY PARY	ZA DYFU	UZOREM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2837,6	2854,9	2863,4	2870,4	2876,5	2889,4	2898,0	2904,2	2908,8
Entalpia przy sprężaniu izentropowym [kJ/kg]	i _{Lizen}	2820,9	2834,2	2840,6	2845,8	2850,2	2859,5	2865,6	2869,8	2873,0
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	171,2	178,4	181,9	184,8	187,2	192,5	196,0	198,5	200,4
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,616	0,753	0,84	0,925	1,008	1,225	1,406	1,557	1,684
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	v _{L izen}	3,316	2,755	2,488	2,272	2,096	1,742	1,528	1,387	1,286
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,939	7,877	7,840	7,808	7,778	7,709	7,658	7,621	7,591
Temperatura na wylocie z dyfuzora [°C]	tL	179,8	188,9	193,5	197,3	200,5	207,6	212,3	215,7	218,3
Ciśnienie na wylocie z dyfuzora [barA]	pL	0,616	0,753	0,840	0,925	1,008	1,225	1,406	1,557	1,684
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	3,380	2,820	2,552	2,336	2,158	1,800	1,583	1,439	1,337
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	SL	7,976	7,922	7,890	7,861	7,834	7,772	7,726	7,692	7,666

Tab. Z1.24 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=6,6 barA oraz dla drugiego stopnia p_{s2}=6,6 barA, stopień eżekcji pierwszego stopnia G_{s1} =0,500

s1=6,6 barA; 61	=0,500;	s2=6,6 ba	rA													
ZAŁOŻONY STOPIEŃ EŻEKCJI Strumień masy pary zasysanej [kg/s] m _x 1 1 <th <="" colspan="3" td=""></th>																
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	1						
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7						
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143						
PARAMETRY PA	ARY ZA D	YSZĄ (N-N)													
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2427,2	2427,2	2427,2	2427,2	2427,2	2427,2	2427,2	2427,2	2427,2						
Prędkość za dyszą [m/s]	W _N	997,6	997,6	997,6	997,6	997,6	997,6	997,6	997,6	997,6						
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2453,0	2453,0	2453,0	2453,0	2453,0	2453,0	2453,0	2453,0	2453,0						
PARAMETRY PARY NA D		DO DYFUZ	ORA (D-D)		-				-							
Prędkość na wlocie do dyfuzora [m/s]	WD	627,5	697,3	731,8	760,1	784,4	836,7	871,6	896,5	915,2						
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2701,6	2679,1	2666,5	2655,5	2645,5	2622,3	2605,7	2593,2	2583,4						
Temperatura pary na dolocie do dyfuzora [°C]	t _D	108,98	97,44	90,99	85,36	80,29	73,74	73,74	73,74	73,74						
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	4,80	4,65	4,56	4,49	4,42	4,32	4,29	4,27	4,25						
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	0,9956	0,9885	0,9831	0,9789						
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,889	7,830	7,795	7,765	7,737	7,670	7,622	7,586	7,558						
PARAMETRY PAR	ZADYF	UZOREM (L-L)													
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60						
Entalpia pary za dyfuzorem [kJ/kg]	iL	2854,7	2869,2	2876,3	2882,1	2887,2	2898,0	2905,2	2910,3	2914,2						
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2839,4	2850,2	2855,3	2859,5	2863,0	2870,4	2875,2	2878,6	2881,1						
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	181,1	186,9	189,8	192,1	194,1	198,4	201,3	203,3	204,9						
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,751	0,9	0,994	1,084	1,171	1,401	1,591	1,749	1,88						
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	2,779	2,347	2,137	1,969	1,823	1,542	1,365	1,246	1,163						
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000						
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,889	7,830	7,795	7,765	7,737	7,670	7,622	7,586	7,558						
Temperatura na wylocie z dyfuzora [°C]	tL	188,9	196,6	200,4	203,6	206,3	212,3	216,3	219,2	221,4						
Ciśnienie na wylocie z dyfuzora [barA]	pL	0,751	0,900	0,994	1,084	1,171	1,401	1,591	1,749	1,880						
Objętość właściwa na wylocie z dyfuzora [m3/kg]	vL	2,827	2,397	2,188	2,019	1,879	1,589	1,410	1,289	1,204						
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000						
Entropia na wylocie z dyfuzora [kJ/K kg]	SL	7,923	7,871	7,840	7,813	7,788	7,728	7,684	7,651	7,626						

Tab. Z1.25 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1} =6,6 barA oraz dla drugiego stopnia p_{s2} =6,6 barA, stopień eżekcji pierwszego stopnia G_{s1} =0,429

s1=6,6 barA;	б1=0,429;	s2=6,6 ba	rA							
ZAŁOŻON	NY STOPIEŃ	EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETR	Y PARY ZA D	YSZĄ (N-N	I)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	i _{Nizen}	2449,4	2449,4	2449,4	2449,4	2449,4	2449,4	2449,4	2449,4	2449,4
Prędkość za dyszą [m/s]	W _N	978,4	978,4	978,4	978,4	978,4	978,4	978,4	978,4	978,4
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2474,0	2474,0	2474,0	2474,0	2474,0	2474,0	2474,0	2474,0	2474,0
PARAMETRY PARY NA	A DOLOCIE I	DO DYFUZ	ORA (D-D)							
Prędkość na wlocie do dyfuzora [m/s]	WD	615,4	683,8	717,7	745,5	769,3	820,6	854,8	879,2	897,5
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2717,4	2695,1	2682,6	2671,7	2661,8	2639,0	2622,7	2610,4	2600,9
Temperatura pary na dolocie do dyfuzora [°C]	t _D	117,44	105,98	99,62	94,06	89,06	77,59	77,38	77,38	77,38
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	4,21	4,08	4,01	3,95	3,90	3,77	3,74	3,72	3,70
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9931	0,9878	0,9837
Entropia pary na dolocie do dyfuzora [kJ/K kg]	s _D	7,860	7,802	7,769	7,740	7,713	7,649	7,602	7,567	7,540
PARAMETRY P.	ARY ZA DYF	UZOREM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2863,2	2876,2	2882,7	2888,0	2892,5	2902,2	2908,7	2913,4	2916,8
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2848,7	2858,1	2862,7	2866,3	2869,4	2875,9	2880,1	2883,1	2885,2
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	186,0	191,2	193,8	195,8	197,6	201,4	204,0	205,8	207,2
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,836	0,992	1,089	1,181	1,271	1,506	1,7	1,86	1,995
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	2,522	2,148	1,967	1,821	1,698	1,443	1,284	1,178	1,100
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,860	7,802	7,769	7,740	7,713	7,649	7,602	7,567	7,540
Temperatura na wylocie z dyfuzora [°C]	tL	193,4	200,4	203,9	196,6	209,2	214,6	218,3	220,9	222,9
Ciśnienie na wylocie z dyfuzora [barA]	pL	0,836	0,992	1,089	1,181	1,271	1,506	1,700	1,860	1,995
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	2,564	2,192	2,011	1,824	1,741	1,485	1,324	1,216	1,138
Stopień suchości na wylocie z dyfuzora [-]	xL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	S ₁	7,892	7,841	7,812	7,743	7,761	7,703	7,661	7,629	7,604

Tab. Z1.26 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=6,6 barA oraz dla drugiego stopnia p_{s2}=6,6 barA, stopień eżekcji pierwszego stopnia G_{s1}=0,376

s1=6,6 barA; 61=	0,0,376;	s2=6,6 b	arA							
ZAŁOŻONY S	STOPIEŃ	EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	mx	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	6	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY PA	RY ZA D	YSZĄ (N-N)		-				-	
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2468,6	2468,6	2468,6	2468,6	2468,6	2468,6	2468,6	2468,6	2468,6
Prędkość za dyszą [m/s]	W _N	961,1	961,1	961,1	961,1	961,1	961,1	961,1	961,1	961,1
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2492,3	2492,3	2492,3	2492,3	2492,3	2492,3	2492,3	2492,3	2492,3
PARAMETRY PARY NA D		O DYFUZ	ORA (D-D)						1	
Prędkość na wlocie do dyfuzora [m/s]	WD	604,6	671,7	705,0	732,3	755,7	806,1	839,7	863,7	881,6
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2730,7	2708,5	2696,2	2685,4	2675,7	2653,3	2637,2	2625,1	2615,8
Temperatura pary na dolocie do dyfuzora [°C]	t _D	124,52	113,20	106,91	101,43	96,51	85,22	80,56	80,56	80,56
Objętość pary na dolocie do dyfuzora [m ³ /kg]	V _D	3,76	3,65	3,59	3,54	3,49	3,38	3,32	3,31	3,29
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9971	0,9918	0,9878
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,835	7,778	7,746	7,717	7,691	7,630	7,584	7,550	7,524
PARAMETRY PARY	ZA DYFU	JZOREM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2870,2	2882,0	2887,9	2892,7	2896,8	2905,7	2911,6	2915,8	2919,0
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2856,3	2864,7	2868,7	2872,0	2874,7	2880,5	2884,2	2886,8	2888,7
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	190,1	194,7	197,0	198,9	200,5	203,9	206,2	207,9	209,1
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,916	1,079	1,179	1,274	1,365	1,604	1,801	1,963	2,098
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	2,322	1,990	1,829	1,699	1,590	1,362	1,218	1,120	1,050
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,835	7,778	7,746	7,717	7,691	7,630	7,584	7,550	7,524
Temperatura na wylocie z dyfuzora [°C]	tL	197,1	203,5	206,7	209,3	211,6	216,6	219,9	222,4	224,2
Ciśnienie na wylocie z dyfuzora [barA]	pL	0,916	1,079	1,179	1,274	1,365	1,604	1,801	1,963	2,098
Objętość właściwa na wylocie z dyfuzora [m3/kg]	v _L	2,358	2,028	1,868	1,737	1,629	1,399	1,254	1,155	1,084
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	SL	7,865	7,815	7,786	7,761	7,737	7,682	7,641	7,610	7,586

Tab. Z1.27 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=6,6 barA oraz dla drugiego stopnia p_{s2}=6,6 barA, stopień eżekcji pierwszego stopnia G_{s1}=0,333

s1=6,6 barA; 61	=0,0,333;	; s2=6,6 b	arA							
ZAŁOŻONY	STOPIEŃ	EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY P	ARY ZA D	YSZĄ (N-N)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2485,9	2485,9	2485,9	2485,9	2485,9	2485,9	2485,9	2485,9	2485,9
Prędkość za dyszą [m/s]	W _N	945,1	945,1	945,1	945,1	945,1	945,1	945,1	945,1	945,1
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2508,7	2508,7	2508,7	2508,7	2508,7	2508,7	2508,7	2508,7	2508,7
PARAMETRY PARY NA I		DO DYFUZ	ORA (D-D)				-			
Prędkość na wlocie do dyfuzora [m/s]	WD	594,5	660,6	693,3	720,1	743,1	792,7	825,7	849,3	867,0
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2742,2	2720,3	2708,1	2697,5	2688,0	2665,9	2650,1	2638,2	2629,0
Temperatura pary na dolocie do dyfuzora [°C]	t _D	130,71	119,52	113,32	107,93	103,08	91,97	84,09	83,43	83,43
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	3,41	3,31	3,26	3,21	3,17	3,07	3,00	2,98	2,97
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9954	0,9914
Entropia pary na dolocie do dyfuzora [kJ/K kg]	S _D	7,811	7,756	7,724	7,697	7,671	7,612	7,568	7,535	7,509
PARAMETRY PAR	Y ZA DYF	UZOREM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2876,2	2887,0	2892,4	2896,8	2900,6	2908,7	2914,1	2918,0	2920,9
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2862,8	2870,3	2874,0	2876,9	2879,3	2884,4	2887,7	2890,0	2891,7
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	193,6	197,8	199,9	201,6	203,0	206,1	208,2	209,7	210,9
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,995	1,163	1,265	1,362	1,456	1,697	1,896	2,06	2,196
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m³/kg]	V _{L izen}	2,153	1,858	1,714	1,597	1,498	1,293	1,161	1,071	1,007
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,811	7,756	7,724	7,697	7,671	7,612	7,568	7,535	7,509
Temperatura na wylocie z dyfuzora [°C]	tL	200,4	206,2	209,2	211,6	213,7	218,3	221,4	223,6	225,3
Ciśnienie na wylocie z dyfuzora [barA]	pL	0,995	1,163	1,265	1,362	1,456	1,697	1,896	2,060	2,196
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	2,185	1,892	1,749	1,632	1,533	1,326	1,194	1,103	1,038
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	S,	7.839	7,791	7.763	7,738	7.716	7.662	7.622	7,592	7.569

Tab. Z1. 28 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=6,6 barA oraz dla drugiego stopnia p_{s2}=6,6 barA, stopień eżekcji pierwszego stopnia G_{s1} =0,250

s1=6,6 barA; 61	=0,250;	s2=6,6 ba	rA							
ZAŁOŻONY S	STOPIEŃ	EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	mx	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY PA	RY ZA D	YSZĄ (N-N)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2525,2	2525,2	2525,2	2525,2	2525,2	2525,2	2525,2	2525,2	2525,2
Prędkość za dyszą [m/s]	W _N	906,8	906,8	906,8	906,8	906,8	906,8	906,8	906,8	906,8
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2546,1	2546,1	2546,1	2546,1	2546,1	2546,1	2546,1	2546,1	2546,1
PARAMETRY PARY NA D		O DYFUZ	ORA (D-D)						1	
Prędkość na wlocie do dyfuzora [m/s]	WD	570,4	633,8	665,2	690,9	713,0	760,6	792,2	814,9	831,9
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2767,6	2746,4	2734,6	2724,4	2715,2	2694,1	2679,0	2667,7	2658,9
Temperatura pary na dolocie do dyfuzora [°C]	t _D	144,33	133,52	127,57	122,40	117,75	107,13	99,60	94,01	90,04
Objętość pary na dolocie do dyfuzora [m ³ /kg]	v _D	2,72	2,65	2,61	2,58	2,54	2,47	2,42	2,38	2,35
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9997
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,755	7,703	7,674	7,649	7,625	7,570	7,530	7,500	7,476
PARAMETRY PARY	ZA DYFU	JZOREM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2889,0	2897,7	2902,0	2905,6	2908,6	2915,1	2919,5	2922,6	2924,9
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2876,9	2882,6	2885,3	2887,5	2889,3	2893,0	2895,4	2897,1	2898,3
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	201,2	204,5	206,1	207,4	208,5	210,9	212,6	213,7	214,6
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	1,201	1,379	1,487	1,588	1,686	1,932	2,132	2,297	2,434
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	1,812	1,588	1,487	1,386	1,308	1,146	1,041	0,968	0,915
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,755	7,703	7,674	7,649	7,625	7,570	7,530	7,500	7,476
Temperatura na wylocie z dyfuzora [°C]	tL	207,3	212,1	214,5	216,5	218,2	221,9	224,5	226,4	227,8
Ciśnienie na wylocie z dyfuzora [barA]	p∟	1,201	1,379	1,487	1,588	1,686	1,915	2,132	2,297	2,434
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	1,836	1,614	1,503	1,413	1,335	1,173	1,068	0,994	0,940
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	SL	7,780	7,735	7,709	7,686	7,665	7,616	7,579	7,551	7,530

Tab. Z1.29 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=6,6 barA oraz dla drugiego stopnia p_{s2}=6,6 barA, stopień eżekcji pierwszego stopnia G_{s1}=0,200

s1=6,6 barA; б	1=0,200;	s2=6,6 ba	rA									
ZAŁOŻONY STOPIEŃ EŻEKCJI												
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	1		
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7		
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143		
PARAMETRY PARY ZA DYSZĄ (N-N)												
Entalpia przy izentropowym rozprężaniu [kJ/kg]	i _{Nizen}	2553,3	2553,3	2553,3	2553,3	2553,3	2553,3	2553,3	2553,3	2553,3		
Prędkość za dyszą [m/s]	W _N	877,9	877,9	877,9	877,9	877,9	877,9	877,9	877,9	877,9		
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2572,8	2572,8	2572,8	2572,8	2572,8	2572,8	2572,8	2572,8	2572,8		
PARAMETRY PARY NA DOLOCIE DO DYFUZORA (D-D)												
Prędkość na wlocie do dyfuzora [m/s]	WD	552,2	613,6	644,0	668,9	690,3	736,3	767,0	788,9	805,3		
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2785,0	2764,3	2752,9	2743,0	2734,1	2713,7	2699,2	2688,3	2679,9		
Temperatura pary na dolocie do dyfuzora [°C]	t _D	153,65	143,16	137,40	132,41	127,94	117,72	110,48	105,11	100,97		
Objętość pary na dolocie do dyfuzora [m ³ /kg]	vD	2,33	2,27	2,24	2,21	2,18	2,13	2,08	2,05	2,03		
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000		
Entropia pary na dolocie do dyfuzora [kJ/K kg]	s _D	7,714	7,665	7,638	7,613	7,591	7,540	7,502	7,474	7,452		
PARAMETRY PAR	Y ZA DYF	UZOREM (L-L)									
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60		
Entalpia pary za dyfuzorem [kJ/kg]	iL	2897,6	2904,9	2908,5	2911,4	2914,0	2919,4	2923,0	2925,6	2927,6		
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2886,3	2890,8	2892,9	2894,6	2896,0	2898,8	2900,7	2901,9	2902,8		
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	206,3	209,0	210,3	211,4	212,3	214,2	215,6	216,5	217,2		
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	1,369	1,555	1,667	1,771	1,87	2,12	2,321	2,484	2,62		
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m³/kg]	v_{Lizen}	1,606	1,420	1,328	11,252	1,188	1,051	0,961	0,989	0,854		
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000		
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,714	7,665	7,638	7,613	7,591	7,540	7,502	7,474	7,452		
Temperatura na wylocie z dyfuzora [°C]	tL	212,0	216,1	218,1	219,8	221,2	224,5	226,6	228,2	229,5		
Ciśnienie na wylocie z dyfuzora [barA]	p∟	1,369	1,555	1,667	1,771	1,870	2,120	2,321	2,484	2,620		
Objętość właściwa na wylocie z dyfuzora [m3/kg]	v_L	1,625	1,442	1,350	1,275	1,210	1,074	0,984	0,922	0,876		
Stopień suchości na wylocie z dyfuzora [-]	xL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000		
Entropia na wylocie z dyfuzora [kJ/K kg]	S,	7.738	7.694	7.670	7.648	7.628	7.582	7.548	7.522	7.501		

Tab. Z1.30 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=6,6 barA oraz dla drugiego stopnia p_{s2}=6,6 barA, stopień eżekcji pierwszego stopnia G_{s1}=0,167

s1=6,6 barA; 61=0,167; s2=6,6 barA												
ZAŁOŻONY STOPIEŃ EŻEKCJI												
Strumień masy pary zasysanej [kg/s]	mx	1	1	1	1	1	1	1	1	1		
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7		
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143		
PARAMETRY PARY ZA DYSZĄ (N-N)												
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2574,5	2574,5	2574,5	2574,5	2574,5	2574,5	2574,5	2574,5	2574,5		
Prędkość za dyszą [m/s]	W _N	854,9	854,9	854,9	854,9	854,9	854,9	854,9	854,9	854,9		
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2592,9	2592,9	2592,9	2592,9	2592,9	2592,9	2592,9	2592,9	2592,9		
PARAMETRY PARY NA DOLOCIE DO DYFUZORA (D-D)												
Prędkość na wlocie do dyfuzora [m/s]	WD	537,8	597,5	627,1	651,4	672,2	717,0	746,9	768,3	784,3		
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2797,6	2777,4	2766,4	2756,7	2748,1	2728,4	2714,3	2703,8	2695,7		
Temperatura pary na dolocie do dyfuzora [°C]	t _D	160,48	150,27	144,68	139,84	135,51	125,62	118,62	113,42	109,43		
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	2,07	2,02	1,99	1,97	1,95	1,90	1,86	1,84	1,82		
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000		
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,683	7,636	7,610	7,586	7,565	7,516	7,481	7,454	7,433		
PARAMETRY PAR	ZA DYFU	JZOREM (L-L)									
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60		
Entalpia pary za dyfuzorem [kJ/kg]	iL	2903,7	2910,0	2913,1	2915,6	2917,8	2922,5	2925,6	2927,8	2929,5		
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2893,1	2896,7	2898,4	2899,7	2900,8	2903,1	2904,5	2905,4	2906,1		
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	210,1	212,3	213,4	214,3	215,0	216,7	217,8	218,6	219,2		
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	1,511	1,703	1,817	1,923	2,023	2,275	2,474	2,637	2,77		
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	1,465	1,305	1,225	1,159	1,103	0,983	0,906	0,850	0,810		
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000		
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,683	7,636	7,610	7,586	7,565	7,516	7,481	7,454	7,433		
Temperatura na wylocie z dyfuzora [°C]	tL	215,4	218,9	220,7	222,2	223,5	226,3	228,2	229,6	230,7		
Ciśnienie na wylocie z dyfuzora [barA]	pL	1,511	1,703	1,817	1,923	2,023	2,275	2,474	2,637	2,770		
Objętość właściwa na wylocie z dyfuzora [m3/kg]	v _L	1,482	1,324	1,244	1,179	1,123	1,004	0,926	0,871	0,830		
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000		
Entropia na wylocie z dyfuzora [kJ/K kg]	SL	7,705	7,663	7,640	7,619	7,600	7,556	7,524	7,499	7,480		

Tab. Z1.31 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=6,6 barA oraz dla drugiego stopnia p_{s2}=6,6 barA, stopień eżekcji pierwszego stopnia G_{s1} =0,143

s1=6,6 barA; 61=0,143; s2=6,6 barA													
ZAŁOŻONY STOPIEŃ EŻEKCJI													
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	1			
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7			
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143			
PARAMETRY PARY ZA DYSZĄ (N-N)													
Entalpia przy izentropowym rozprężaniu [kJ/kg]	i _{Nizen}	2590,9	2590,9	2590,9	2590,9	2590,9	2590,9	2590,9	2590,9	2590,9			
Prędkość za dyszą [m/s]	W _N	836,5	836,5	836,5	836,5	836,5	836,5	836,5	836,5	836,5			
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2608,5	2608,5	2608,5	2608,5	2608,5	2608,5	2608,5	2608,5	2608,5			
PARAMETRY PARY NA DOLOCIE DO DYFUZORA (D-D)													
Prędkość na wlocie do dyfuzora [m/s]	WD	526,2	584,7	613,6	637,4	657,8	701,6	730,8	751,7	767,4			
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2807,3	2787,5	2776,6	2767,2	2758,8	2739,6	2725,8	2715,6	2707,7			
Temperatura pary na dolocie do dyfuzora [°C]	t _D	165,67	155,68	150,23	145,52	141,30	131,67	124,87	119,82	115,93			
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	1,89	1,85	1,83	1,80	1,79	1,74	1,71	1,69	1,67			
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000			
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,659	7,613	7,588	7,565	7,545	7,498	7,464	7,438	7,418			
PARAMETRY PAR	RY ZA DYF	UZOREM (L-L)										
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60			
Entalpia pary za dyfuzorem [kJ/kg]	iL	2908,3	2913,8	2916,5	2918,7	2920,7	2924,8	2927,5	2929,5	2930,9			
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2898,2	2901,2	2902,5	2903,6	2904,5	2906,2	2907,3	2908,1	2908,6			
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	212,9	214,8	215,5	216,4	217,1	218,5	219,4	220,1	220,7			
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	1,631	1,826	1,939	2,048	2,15	2,402	2,601	2,762	2,893			
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	1,365	1,223	1,158	1,093	1,422	0,935	0,864	0,814	0,778			
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000			
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,659	7,613	7,588	7,565	7,545	7,498	7,464	7,438	7,418			
Temperatura na wylocie z dyfuzora [°C]	tL	217,9	221,1	222,7	224,0	225,1	227,7	229,4	230,7	231,6			
Ciśnienie na wylocie z dyfuzora [barA]	pL	1,631	1,826	1,939	2,048	2,150	2,402	2,601	2,762	2,893			
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	1,380	1,239	1,170	1,111	1,060	0,953	0,882	0,989	0,796			
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000			
Entropia na wylocie z dyfuzora [kJ/K kg]	S.	7.679	7.639	7.617	7.596	7.578	7.535	7.504	7.481	7.463			

Z1.2.4. Układ szeregowy – Para zasilająca inżektor pierwszego stopnia p_{s1}=3,0 barA, inżektor drugiego stopnia p_{s2}=6,6 barA

Tab. Z1. 32 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=3,0 barA oraz dla drugiego stopnia p_{s2}=6,6 barA, stopień eżekcji pierwszego stopnia G_{s1}=0,500

s1=3,0 barA; 61=0,500; s2=6,6 barA													
ZAŁOŻONY STOPIEŃ EŻEKCJI													
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	1			
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7			
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143			
PARAMETRY PARY ZA DYSZĄ (N-N)													
Entalpia przy izentropowym rozprężaniu [kJ/kg]	i _{Nizen}	2384,4	2384,4	2384,4	2384,4	2384,4	2384,4	2384,4	2384,4	2384,4			
Prędkość za dyszą [m/s]	W _N	1032,9	1032,9	1032,9	1032,9	1032,9	1032,9	1032,9	1032,9	1032,9			
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2412,3	2412,3	2412,3	2412,3	2412,3	2412,3	2412,3	2412,3	2412,3			
PARAMETRY PARY NA DOLOCIE DO DYFUZORA (D-D)													
Prędkość na wlocie do dyfuzora [m/s]	WD	649,7	721,9	757,7	787,0	812,2	866,3	902,4	928,2	947,5			
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2649,9	2630,6	2619,5	2609,6	2600,6	2579,4	2563,9	2552,2	2543,1			
Temperatura pary na dolocie do dyfuzora [°C]	t _D	81,74	71,88	66,78	66,78	66,78	66,78	66,78	66,78	66,78			
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	6,01	5,84	5,75	5,72	5,70	5,65	5,61	5,58	5,56			
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	0,9995	0,9888	0,9915	0,9824	0,9758	0,9708	0,9669			
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,887	7,832	7,799	7,770	7,744	7,681	7,636	7,601	7,575			
PARAMETRY PAR	ZADYF	JZOREM (L-L)	1		1				1			
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60			
Entalpia pary za dyfuzorem [kJ/kg]	iL	2817,4	2838,0	2848,3	2856,6	2863,8	2879,3	2889,6	2897,0	2902,5			
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2800,7	2817,3	2825,4	2831,9	2837,5	2849,3	2857,1	2862,5	2866,6			
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	160,1	169,8	174,2	177,8	180,8	187,4	191,7	194,9	197,2			
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,624	0,765	0,854	0,939	1,022	1,239	1,417	1,569	1,696			
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	$v_{L izen}$	3,196	2,659	2,404	2,203	2,037	1,703	1,502	1,365	1,268			
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000			
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,887	7,832	7,799	7,770	7,744	7,681	7,636	7,601	7,575			
Temperatura na wylocie z dyfuzora [°C]	tL	169,5	180,4	185,8	190,3	194,2	205,5	208,1	212,1	215,2			
Ciśnienie na wylocie z dyfuzora [barA]	p∟	0,624	0,765	0,854	0,939	1,022	1,239	1,417	1,569	1,696			
Objętość właściwa na wylocie z dyfuzora [m3/kg]	vL	3,260	2,723	2,465	2,266	2,099	1,761	1,557	1,417	1,319			
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000			
Entropia na wylocie z dyfuzora [kJ/K kg]	SL	7,925	7,878	7,850	7,824	7,801	7,745	7,705	7,674	7,650			

Tab. Z1.33 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=3,0 barA oraz dla drugiego stopnia p_{s2}=6,6 barA, stopień eżekcji pierwszego stopnia G_{s1}=0,429

s1=3,0 barA; 61=0,429; s2=6,6 barA												
ZAŁOŻONY STOPIEŃ EŻEKCJI												
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	1		
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7		
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143		
PARAMETRY PARY ZA DYSZĄ (N-N)												
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2402,5	2402,5	2402,5	2402,5	2402,5	2402,5	2402,5	2402,5	2402,5		
Prędkość za dyszą [m/s]	W _N	1018,3	1018,3	1018,3	1018,3	1018,3	1018,3	1018,3	1018,3	1018,3		
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2429,5	2429,5	2429,5	2429,5	2429,5	2429,5	2429,5	2429,5	2429,5		
PARAMETRY PARY NA DOLOCIE DO DYFUZORA (D-D)												
Prędkość na wlocie do dyfuzora [m/s]	WD	640,6	711,7	747,0	775,9	800,7	854,1	889,7	915,1	934,2		
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2662,7	2643,6	2632,6	2622,8	2613,9	2593,0	2577,8	2566,3	2557,4		
Temperatura pary na dolocie do dyfuzora [°C]	t _D	88,59	78,81	73,23	69,70	69,70	69,70	69,70	69,70	69,70		
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	5,39	5,24	5,16	5,09	5,08	5,03	5,00	4,97	4,95		
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	0,9988	0,9879	0,9861	0,9795	0,9746	0,9708		
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,864	7,810	7,779	7,750	7,724	7,663	7,619	7,586	7,559		
PARAMETRY PAR	ZA DYF	JZOREM (L-L)									
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60		
Entalpia pary za dyfuzorem [kJ/kg]	iL	2824,1	2843,6	2853,3	2861,2	2868,0	2882,6	2892,4	2899,4	2904,6		
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2807,9	2823,6	2831,2	2837,3	2842,6	2853,7	2860,9	2866,1	2869,9		
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	164,8	173,2	177,4	180,7	183,6	189,8	193,9	196,8	199,1		
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,681	0,827	0,919	1,007	1,092	1,315	1,499	1,652	1,782		
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	2,954	2,478	2,249	2,067	1,918	1,613	1,426	1,301	1,212		
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000		
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,864	7,810	7,779	7,750	7,724	7,663	7,619	7,586	7,559		
Temperatura na wylocie z dyfuzora [°C]	tL	173,0	183,4	188,6	192,8	196,4	204,4	209,7	213,5	216,4		
Ciśnienie na wylocie z dyfuzora [barA]	pL	0,681	0,827	0,919	1,007	1,092	1,315	1,499	1,652	1,782		
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	3,010	2,535	2,307	2,124	1,973	1,665	1,476	1,349	1,258		
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000		
Entropia na wylocie z dyfuzora [kJ/K kg]	SL	7,900	7,854	7,827	7,802	7,779	7,725	7,685	7,655	7,631		

Tab. Z1.34 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=3,0 barA oraz dla drugiego stopnia p_{s2}=6,6 barA, stopień eżekcji pierwszego stopnia G_{s1}=0,37

s1=3,0 barA;	б1=0,0,376;	s2=6,6 b	arA									
ZAŁOŻC	ONY STOPIEŃ	EŻEKCJI										
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	1		
Strumień masy pary zasilającej inżektor [kg/s]	m _c	1,5	2	2,33	2,66	3	4	5	6	7		
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143		
PARAMETRY PARY ZA DYSZĄ (N-N)												
Entalpia przy izentropowym rozprężaniu [kJ/kg]	i _{Nizen}	2418,7	2418,7	2418,7	2418,7	2418,7	2418,7	2418,7	2418,7	2418,7		
Prędkość za dyszą [m/s]	W _N	1004,9	1004,9	1004,9	1004,9	1004,9	1004,9	1004,9	1004,9	1004,9		
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2444,9	2444,9	2444,9	2444,9	2444,9	2444,9	2444,9	2444,9	2444,9		
PARAMETRY PARY NA DOLOCIE DO DYFUZORA (D-D)												
Prędkość na wlocie do dyfuzora [m/s]	WD	632,1	702,3	737,1	765,6	790,1	842,8	877,9	903,0	921,8		
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2673,5	2654,7	2643,8	2634,2	2625,4	2604,9	2590,0	2578,7	2569,9		
Temperatura pary na dolocie do dyfuzora [°C]	t _D	94,43	84,78	79,27	74,41	72,34	72,34	72,34	72,34	72,34		
Objętość pary na dolocie do dyfuzora [m ³ /kg]	vD	4,89	4,76	4,68	4,62	4,58	4,54	4,51	4,49	4,55		
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	0,9980	0,9892	0,9828	0,9779	0,9741		
Entropia pary na dolocie do dyfuzora [kJ/K kg]	s _D	7,842	7,789	7,759	7,731	7,706	7,647	7,603	7,571	7,545		
PARAMETRY	PARY ZA DYF	UZOREM (L-L)									
Prędkość na wylocie z dyfuzora [m/s]	wL	60	60	60	60	60	60	60	60	60		
Entalpia pary za dyfuzorem [kJ/kg]	iL	2829,5	2848,1	2857,3	2864,9	2871,4	2885,4	2894,7	2901,3	2906,3		
Entalpia przy sprężaniu izentropowym [kJ/kg]	i _{Lizen}	2813,9	2828,8	2836,0	2841,8	2846,8	2857,3	2864,2	2869,0	2872,7		
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	168,0	176,0	180,0	183,2	185,9	191,8	195,7	198,5	200,6		
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,736	0,887	0,982	1,072	1,16	1,388	1,575	1,73	1,86		
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	2,752	2,324	2,117	1,952	1,814	1,534	1,362	1,247	1,164		
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000		
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,842	7,789	7,759	7,731	7,706	7,647	7,603	7,571	7,545		
Temperatura na wylocie z dyfuzora [°C]	t	176,0	185,9	190,8	194,8	198,3	204,7	211,0	214,6	217,4		
Ciśnienie na wylocie z dyfuzora [barA]	pL	0,736	0,887	0,982	1,072	1,160	1,388	1,575	1,730	1,860		
Objętość właściwa na wylocie z dyfuzora [m3/kg]	V _L	2,803	2,376	2,168	2,003	1,864	1,593	1,408	1,291	1,207		
Stopień suchości na wylocie z dyfuzora [-]	xL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000		
Entropia na wylocie z dyfuzora [kJ/K kg]	S	7,877	7,832	7,805	7,781	7,759	7,705	7,667	7,638	7,615		
Tab. Z1.35 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=3,0 barA oraz dla drugiego stopnia p_{s2}=6,6 barA, stopień eżekcji pierwszego stopnia G_{s1}=0,333

s1=3,0 barA; 61	=0,0,333	3; s2=6,6 b	arA							
ZAŁOŻONY	STOPIEN	Ń EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	mx	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY F	ARY ZA I	DYSZĄ (N-N)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2432,6	2432,6	2432,6	2432,6	2432,6	2432,6	2432,6	2432,6	2432,6
Prędkość za dyszą [m/s]	W _N	993,0	993,0	993,0	993,0	993,0	993,0	993,0	993,0	993,0
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2458,2	2458,2	2458,2	2458,2	2458,2	2458,2	2458,2	2458,2	2458,2
PARAMETRY PARY NA	DOLOCIE	DO DYFUZ	ORA (D-D)						1	
Prędkość na wlocie do dyfuzora [m/s]	WD	624,6	694,0	728,4	756,6	780,8	832,8	867,5	892,3	910,9
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2682,9	2664,2	2653,5	2644,0	2635,3	2615,1	2600,4	2589,3	2580,7
Temperatura pary na dolocie do dyfuzora [°C]	t _D	99,44	89,90	84,46	79,66	75,31	74,63	74,63	74,63	74,63
Objętość pary na dolocie do dyfuzora [m ³ /kg]	V _D	4,50	4,38	4,31	4,25	4,20	4,16	4,13	4,11	4,09
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	0,9919	0,9855	0,9808	0,9770
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7.82232	7,772	7,742	7,715	7,690	7,632	7,590	7,558	7,533
PARAMETRY PAR	RY ZA DYI	FUZOREM (L-L)			1				
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2834,2	2852,0	2860,9	2868,1	2874,3	2887,7	2896,6	2903,0	2907,8
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2819,0	2833,2	2840,1	2845,7	2850,4	2860,4	2867,0	2871,6	2875,0
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	170,8	178,5	182,2	185,3	187,9	193,5	197,3	200,0	202,0
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,787	0,942	1,039	1,131	1,221	1,453	1,643	1,8	1,931
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	2,590	2,200	2,010	1,858	1,730	1,471	1,310	1,202	1,124
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7.82232	7,772	7,742	7,715	7,690	7,632	7,590	7,558	7,533
Temperatura na wylocie z dyfuzora [°C]	tL	178,5	188,0	192,7	196,6	199,9	207,2	212,1	215,6	218,3
Ciśnienie na wylocie z dyfuzora [barA]	pL	0,787	0,942	1,039	1,131	1,221	1,453	1,643	1,800	1,931
Objętość właściwa na wylocie z dyfuzora [m3/kg]	v _L	2,636	2,247	2,058	1,905	1,777	1,515	1,353	1,243	1,164
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	SL	7,856	7,813	7,787	7,763	7,742	7,690	7,652	7,623	7,601

Tab. Z1.36 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=3,0 barA oraz dla drugiego stopnia p_{s2}=6,6 barA, stopień eżekcji pierwszego stopnia G_{s1}=0,250

s1=3,0 barA; 6	51=0,250;	s2=6,6 ba	rA							
ZAŁOŻON	Y STOPIEŃ	EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY	PARY ZA D	YSZĄ (N-N	I)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	i _{Nizen}	2464,2	2464,2	2464,2	2464,2	2464,2	2464,2	2464,2	2464,2	2464,2
Prędkość za dyszą [m/s]	W _N	965,1	965,1	965,1	965,1	965,1	965,1	965,1	965,1	965,1
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2488,2	2488,2	2488,2	2488,2	2488,2	2488,2	2488,2	2488,2	2488,2
PARAMETRY PARY NA	DOLOCIE	DO DYFUZ	ORA (D-D)						
Prędkość na wlocie do dyfuzora [m/s]	WD	607,1	674,5	707,9	735,3	758,8	809,4	843,1	867,2	885,3
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2703,3	2685,2	2674,8	2665,7	2657,3	2637,9	2623,7	2613,1	2604,8
Temperatura pary na dolocie do dyfuzora [°C]	t _D	110,44	101,21	95,96	91,33	87,13	79,84	79,84	79,84	79,83
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	3,74	3,64	3,59	3,54	3,50	3,42	3,40	3,38	3,37
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	0,9979	0,9918	0,9871	0,9836
Entropia pary na dolocie do dyfuzora [kJ/K kg]	s _D	7,778	7,730	7,702	7,677	7,654	7,600	7,559	7,529	7,506
PARAMETRY PA	RY ZA DYF	UZOREM ((L-L)			1				
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2844,2	2860,4	2868,4	2875,0	2880,6	2892,7	2900,8	2906,6	2910,9
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2830,1	2842,9	2849,0	2854,0	2858,3	2867,2	2873,1	2877,2	2880,3
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	176,8	183,7	187,1	189,9	192,2	197,3	200,7	203,1	205,0
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	0,916	1,08	1,182	1,278	1,371	1,611	1,807	1,967	2,1
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	2,254	1,940	1,785	1,660	1,555	1,336	1,199	1,106	1,040
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,778	7,730	7,702	7,677	7,654	7,600	7,559	7,529	7,506
Temperatura na wylocie z dyfuzora [°C]	tL	184,0	192,6	196,9	200,4	203,5	210,1	214,5	217,8	220,2
Ciśnienie na wylocie z dyfuzora [barA]	pL	0,916	1,080	1,182	1,278	1,371	1,611	1,807	1,967	2,100
Objętość właściwa na wylocie z dyfuzora [m3/kg]	v_L	2,291	1,978	1,824	1,699	1,593	1,374	1,235	1,142	1,074
Stopień suchości na wylocie z dyfuzora [-]	xL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	S,	7.809	7.768	7,744	7.722	7,702	7.653	7.617	7.590	7.569

Tab. Z1.37 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=3,0 barA oraz dla drugiego stopnia p_{s2}=6,6 barA, stopień eżekcji pierwszego stopnia G_{s1}=0,200

s1=3,0 barA; 61	=0,200;	s2=6,6 ba	rA							
ZAŁOŻONY S	STOPIEŃ	EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY PA	ARY ZA D	YSZĄ (N-N)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	İ _{Nizen}	2486,7	2486,7	2486,7	2486,7	2486,7	2486,7	2486,7	2486,7	2486,7
Prędkość za dyszą [m/s]	W _N	944,3	944,3	944,3	944,3	944,3	944,3	944,3	944,3	944,3
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2509,5	2509,5	2509,5	2509,5	2509,5	2509,5	2509,5	2509,5	2509,5
PARAMETRY PARY NA D		DO DYFUZ	ORA (D-D)							
Prędkość na wlocie do dyfuzora [m/s]	WD	594,0	660,0	692,7	719,5	742,5	792,0	825,0	848,6	866,3
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2717,3	2699,6	2689,6	2680,7	2672,6	2653,7	2640,0	2629,7	2621,7
Temperatura pary na dolocie do dyfuzora [°C]	t _D	117,98	109,01	103,91	99,44	95,35	85,93	83,57	83,57	83,57
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	3,28	3,20	3,16	3,12	3,08	3,00	2,97	2,95	2,94
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9961	0,9916	0,9881
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,745	7,700	7,673	7,649	7,628	7,576	7,538	7,509	7,486
PARAMETRY PAR	ZADYF	UZOREM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2850,9	2866,0	2873,4	2879,6	2884,8	2896,1	2903,6	2909,0	2913,0
Entalpia przy sprężaniu izentropowym [kJ/kg]	İ _{Lizen}	2837,6	2849,4	2855,1	2859,7	2863,6	2871,8	2877,2	2881,0	2883,9
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	180,9	187,3	190,4	193,0	195,2	199,9	203,1	205,3	207,0
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	1,019	1,191	1,296	1,394	1,489	1,734	1,932	2,095	2,229
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	2,044	1,772	1,639	1,531	1,440	1,248	1,127	1,043	0,983
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,745	7,700	7,673	7,649	7,628	7,576	7,538	7,509	7,486
Temperatura na wylocie z dyfuzora [°C]	tL	187,6	195,7	199,7	203,0	205,8	212,0	216,2	205,3	221,5
Ciśnienie na wylocie z dyfuzora [barA]	p∟	1,019	1,191	1,296	1,394	1,489	1,734	1,932	2,095	2,229
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	2,075	1,805	1,673	1,565	1,489	1,281	1,159	1,043	1,014
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	SL	7,774	7,735	7,712	7,692	7,673	7,626	7,592	7,509	7,546

Tab. Z1. 38 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1}=3,0 barA oraz dla drugiego stopnia p_{s2}=6,6 barA, stopień eżekcji pierwszego stopnia G_{s1}=0,167

s1=3,0 barA; 61	=0,167;	s2=6,6 ba	rA							
ZAŁOŻONY	STOPIEŃ	EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	m _x	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY P	ARY ZA D	YSZĄ (N-N	1)							
Entalpia przy izentropowym rozprężaniu [kJ/kg]	i _{Nizen}	2503,6	2503,6	2503,6	2503,6	2503,6	2503,6	2503,6	2503,6	2503,6
Prędkość za dyszą [m/s]	W _N	928,2	928,2	928,2	928,2	928,2	928,2	928,2	928,2	928,2
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2525,5	2525,5	2525,5	2525,5	2525,5	2525,5	2525,5	2525,5	2525,5
PARAMETRY PARY NA D	OLOCIE [DO DYFUZ	ORA (D-D)							
Prędkość na wlocie do dyfuzora [m/s]	WD	583,9	648,8	680,9	707,2	729,8	778,5	810,9	834,1	851,5
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2727,5	2710,2	2700,4	2691,7	2683,8	2665,5	2652,2	2642,1	2634,3
Temperatura pary na dolocie do dyfuzora [°C]	t _D	123,49	114,73	109,77	105,40	101,44	92,25	86,39	86,39	86,39
Objętość pary na dolocie do dyfuzora [m ³ /kg]	VD	2,98	2,91	2,87	2,84	2,80	2,73	2,68	2,67	2,66
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9994	0,9950	0,9916
Entropia pary na dolocie do dyfuzora [kJ/K kg]	S _D	7,720	7,677	7,651	7,628	7,607	7,558	7,521	7,493	7,471
PARAMETRY PAR	ZA DYF	UZOREM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2855,7	2870,0	2877,0	2882,8	2887,8	2898,5	2905,6	2910,7	2914,5
Entalpia przy sprężaniu izentropowym [kJ/kg]	i _{Lizen}	2842,9	2854,0	2859,4	2863,7	2867,4	2875,2	2880,2	2883,8	2886,5
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	183,8	189,9	192,8	195,3	197,3	201,8	204,8	206,9	208,6
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	1,103	1,28	1,388	1,488	1,585	1,831	2,032	2,195	2,328
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	1,899	1,657	1,538	1,441	1,358	1,186	1,075	1,001	0,944
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,720	7,677	7,651	7,628	7,607	7,558	7,521	7,493	7,471
Temperatura na wylocie z dyfuzora [°C]	tL	190,3	197,9	201,7	204,8	207,6	213,4	217,4	220,3	222,4
Ciśnienie na wylocie z dyfuzora [barA]	pL	1,103	1,280	1,388	1,488	1,585	1,831	2,032	2,195	2,328
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	1,927	1,687	1,568	1,472	1,389	1,216	1,104	1,027	1,028
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	S.	7,748	7.711	7.689	7.669	7.650	7.606	7.573	7.548	7.529

Tab. Z1.39 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p_{s1} =3,0 barA oraz dla drugiego stopnia p_{s2} =6,6 barA, stopień eżekcji pierwszego stopnia G_{s1} =0,143

s1=3,0 barA; 61	.=0,143;	s2=6,6 ba	rA							
ZAŁOŻONY	STOPIEŃ	EŻEKCJI								
Strumień masy pary zasysanej [kg/s]	mx	1	1	1	1	1	1	1	1	1
Strumień masy pary zasilającej inżektor [kg/s]	mc	1,5	2	2,33	2,66	3	4	5	6	7
Stopień eżekcji [-]	б	0,667	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143
PARAMETRY P/	ARY ZA D	YSZĄ (N-N)				-			
Entalpia przy izentropowym rozprężaniu [kJ/kg]	i _{Nizen}	2516,4	2516,4	2516,4	2516,4	2516,4	2516,4	2516,4	2516,4	2516,4
Prędkość za dyszą [m/s]	W _N	915,7	915,7	915,7	915,7	915,7	915,7	915,7	915,7	915,7
Entalpia za dyszą po rozprężaniu [kJ/kg]	i _N	2537,7	2537,7	2537,7	2537,7	2537,7	2537,7	2537,7	2537,7	2537,7
PARAMETRY PARY NA D	OLOCIE E	DO DYFUZ	ORA (D-D)							
Prędkość na wlocie do dyfuzora [m/s]	WD	576,0	640,0	671,7	697,7	720,0	768,0	800,0	822,8	840,0
Entalpia pary na dolocie do dyfuzora [kJ/kg]	i _D	2735,1	2718,2	2708,6	2700,1	2692,3	2674,3	2661,3	2651,5	2643,8
Temperatura pary na dolocie do dyfuzora [°C]	t _D	127,63	119,05	114,18	109,91	106,02	97,04	90,58	88,55	88,55
Objętość pary na dolocie do dyfuzora [m ³ /kg]	V _D	2,77	2,70	2,67	2,64	2,61	2,55	2,50	2,48	2,47
Stopień suchości pary na dolocie do dyfuzora [-]	x _D	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9975	0,9942
Entropia pary na dolocie do dyfuzora [kJ/K kg]	SD	7,702	7,659	7,634	7,612	7,592	7,544	7,508	7,481	7,460
PARAMETRY PAR	Y ZA DYFI	JZOREM (L-L)							
Prędkość na wylocie z dyfuzora [m/s]	WL	60	60	60	60	60	60	60	60	60
Entalpia pary za dyfuzorem [kJ/kg]	iL	2859,3	2873,0	2879,7	2885,3	2890,0	2900,3	2907,1	2912,0	2915,6
Entalpia przy sprężaniu izentropowym [kJ/kg]	i _{Lizen}	2846,9	2857,5	2862,6	2866,8	2870,3	2877,7	2882,5	2885,9	2888,4
Temperatura na wylocie z dyfuzora dla izentropowego sprężania [°C]	t _{L izen}	186,0	191,8	194,6	197,0	199,0	203,2	206,1	208,2	209,7
Ciśnienie na wylocie z dyfuzora dla izentropowego sprężania [barA]	p _{L izen}	1,172	1,353	1,462	1,564	1,662	1,91	2,11	2,275	2,41
Objętość właściwa na wylocie z dyfuzora dla izentropowego sprężania [m ³ /kg]	V _{L izen}	1,796	1,574	1,465	1,376	1,300	1,140	1,037	0,966	0,914
Stopień suchości na wylocie z dyfuzora dla izentropowego sprężania [-]	X _{L izen}	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora dla izentropowego sprężania[kJ/K kg]	S _{L izen}	7,702	7,659	7,634	7,612	7,592	7,544	7,508	7,481	7,460
Temperatura na wylocie z dyfuzora [°C]	tL	192,3	199,6	203,2	206,3	208,8	214,5	218,3	221,1	223,1
Ciśnienie na wylocie z dyfuzora [barA]	pL	1,172	1,353	1,462	1,564	1,662	1,910	2,110	2,275	2,410
Objętość właściwa na wylocie z dyfuzora [m3/kg]	VL	1,821	1,601	1,493	1,404	1,328	1,168	1,065	0,993	0,941
Stopień suchości na wylocie z dyfuzora [-]	XL	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Entropia na wylocie z dyfuzora [kJ/K kg]	SI	7,728	7,692	7,670	7,651	7,633	7,591	7,559	7,534	7,516

ZAŁĄCZNIK NR 2

BADANIA NUMERYCZNE UKŁADÓW Z ZASTOSOWANIEM INŻEKTORÓW PAROWYCH DO REGENERACYJNEGO PODGRZEWANIA WODY ZASILAJĄCEJ KOCIOŁ PAROWY

dokumentujący procedury obliczeniowe i wyniki obliczeń dotyczących rozdziału 6

Z2. BADANIA NUMERYCZNE UKŁADÓW Z ZASTOSOWANIEM INŻEKTORÓW PAROWYCH DO REGENERACYJNEGO PODGRZEWANIA WODY ZASILAJĄCEJ KOCIOŁ PAROWY

Z2.1. Układy referencyjne

Z2.1.1. Układy referencyjne z podciśnieniowym wymiennikiem ciepła CR_{P ref}

Układ referencyjny, przedstawiony na rysunku Z2.1 jest układem pracującym według obiegu Clausiusa-Rankinea wykorzystującym jednostopniowe podgrzewanie wody zasilającej kocioł parowy. Układ składa się z kotła parowego wytwarzającego parę przegrzaną o parametrach stanu 1, zasilającą turbinę parową. Para odlotowa z turbiny (stan 3) skraplana jest w skraplaczu podciśnieniowym. Kondensat o parametrach stanu 5, za pośrednictwem pompy wody zasilającej, trafia do kotła parowego, będąc uprzednio podgrzanym w regeneracyjnym podgrzewaczu podciśnieniowym. Wymiennik ciepła zasilany jest parą zaczepową (stan 2) z turbiny napędowej, która skrapla się przy ciśnieniu nasycenia odpowiadającej przyjętej temperaturze o 5 K wyższej od podgrzania kondensatu. Skropliny pary grzewczej wpływają bez przechłodzenia do skraplacza głównego.

Rys. Z2.1 Schemat cieplno-przepływowy prostego układu referencyjnego z jednostopniowym podgrzewaniem wody zasilającej z zastosowaniem podciśnieniowego powierzchniowego wymiennika ciepła

Na rysunkach Z2.2 oraz Z2.3 przedstawiono graficznie najwyższe wartości sprawności oraz stopnia regeneracji układów regencyjnych w zależności od zastosowanego upustu pary oraz temperatury podgrzania kondensatu.

Rys. Z2.2 Obliczone wartości sprawności regeneracyjnego układu referencyjnego z powierzchniowym, podciśnieniowym wymiennikiem ciepła dla różnych ciśnień i temperatur

Rys. Z2.3 Obliczone stopnie regeneracji układu referencyjnego z powierzchniowym, podciśnieniowym wymiennikiem ciepła dla różnych ciśnień i temperatur

Z2.1.2. Układy referencyjne ze zbiornikiem mieszankowym CR_{D ref} z

Układ referencyjny wykorzystujący zbiornik mieszankowy przedstawiono na rysunku Z2.4. W układzie tym znajduje się jeden podgrzewacz regeneracyjny zasilany bezpośrednio z upustu pary turbiny głównej. Zaletą tego układu jest brak strat ciepła odprowadzonego z podgrzewacza.

Rys. Z2.4 Schemat cieplno-przepływowy układu referencyjnego z jednostopniowym podgrzewaniem wody zasilającej z zastosowaniem mieszankowy wymiennika ciepła

Na rysunkach Z2.5 oraz Z2.6 przedstawiono graficznie najwyższe wartości sprawności oraz stopnia regeneracji układów regencyjnych w zależności od zastosowanego upustu pary oraz temperatury podgrzania kondensatu.

Rys. Z2.5 Obliczone wartości sprawności regeneracyjnego układu referencyjnego z mieszankowym wymiennikiem ciepła dla różnych ciśnień i temperatur

Rys. Z2.6 Obliczone stopnie regeneracji układu referencyjnego z mieszankowym wymiennikiem ciepła dla różnych ciśnień i temperatur

Z2.1.3. Układ referencyjny z nadciśnieniowym wymiennikiem ciepła CR_{N ref}

Schemat cieplno-przepływowy układu referencyjnego wykorzystującego nadciśnieniowy wymiennik ciepła przedstawiono na rysunku Z2.7. W układzie tym zastosowano jeden regeneracyjny podgrzewacz wody kotłowej, zasilany bezpośrednio z upustu pary zaczepowej. Para grzewcza skrapla się przy ciśnieniu nasycenia odpowiadającej temperaturze podgrzania kondensatu plus 5 K.

Rys. Z2.7 Schemat cieplno-przepływowy układu referencyjnego z jednostopniowym podgrzewaniem wody zasilającej z wykorzystaniem nadciśnieniowego wymiennika ciepła

Na rysunkach Z2.8 oraz Z2.9 przedstawiono graficznie najwyższe wartości sprawności oraz stopnia regeneracji układów regencyjnych w zależności od zastosowanego upustu pary oraz temperatury podgrzania kondensatu.

Rys. Z2.8 Obliczone wartości sprawności regeneracyjnego układu referencyjnego z nadciśnieniowym wymiennikiem ciepła dla różnych ciśnień i temperatur

Rys. Z2.9 Obliczone stopnie regeneracji układu referencyjnego z nadciśnieniowym wymiennikiem ciepła dla różnych ciśnień i temperatur

Zastosowanie nadciśnieniowego wymienniku ciepła umożliwia uzyskanie wyższych temperatur wody zasilającej (powyżej temperatury 100 °C). Wiąże się on jednak z wystąpieniem większych strat związanych z ciepłem odprowadzonym w skroplinach pary grzewczej do skraplacza.

Uzyskane wyniki obliczeń układów dla wyższych temperatur wody zasilającej powodują zbyt duże straty ciepła związane z temperaturą kondensatu kierowanego do skraplacza głównego. Przy zasilaniu układu za pomocą pary zaczepowej z wyższych poziomów energetycznych zysk wywołany zwiększeniem temperatury wody zasilającej okazał się być mniejszy niż straty związane ze zmniejszeniem dostępnego spadku entalpii dla turbiny

głównej oraz ilości ciepła odprowadzanego w skraplaczu. Strata ta jest proporcjonalna do wzrostu temperatury zasilania. Stratę tę można jednak wyeliminować poprzez przechłodzenie skroplin w wymiennikach niższego stopnia, skierowanie ich do wymiennika mieszankowego bądź do skrzyni cieplnej, z której następnie zostaną wprowadzone do instalacji wody zasilającej kocioł mieszając się z kondensatem ze skraplacza głównego. Stosując parę zaczepową o ciśnieniu 3,0 BarA możliwe jest podgrzanie kondensatu do temperatury maksymalnie 128,5 °C, natomiast dla zaczepu pary 1,5 barA maksymalna temperatura wyniosła 106,8 °C.

W wyniku przeprowadzonej analizy, powtórzono obliczenia dla zmodyfikowanego układu CR Nref2, w którym skropliny pary grzewczej za pośrednictwem pompy trafiają do instalacji wody zasilającej. Schemat cieplno-przepływowy zmodyfikowanego układu przedstawiono na rysunku Z2.10.

Rys. Z2.10 Schemat cieplno-przepływowy układu referencyjnego z jednostopniowym podgrzewaniem wody zasilającej z zastosowaniem nadciśnieniowego wymiennika ciepła oraz pompą skroplin pary grzewczej

Wyniki obliczeń (sprawność układu oraz stopień regeneracji) przedstawiono graficznie odpowiednio na rysunkach Z2.11 oraz Z2.12. Zastosowanie pompy skroplin spowodowało znaczący wzrost sprawności układu, w rezultacie wyeliminowania straty związanej z odprowadzaniem skroplin do skraplacza głównego.

Rys. Z2.11 Obliczone wartości sprawności regeneracyjnego układu referencyjnego z nadciśnieniowym wymiennikiem ciepła oraz pompą skroplin CR N ref 2

Rys. Z2.12 Obliczone stopnie regeneracji układu referencyjnego z nadciśnieniowym wymiennikiem ciepła oraz pompą skroplin CR N ref 2

W tabeli Z2.1 przedstawiono zbiorcze wyniki obliczeń bilansów energetycznych układów referencyjnych dla rozpatrywanych typów wymienników ciepła w zależności od zastosowanego ciśnienia pary upustowej oraz założonej temperatury podgrzania kondensatu.

	PODCIŚNIENIOWE WYMIENNIKI CIEPŁA														
		19,5 barA			10,0 barA			6,6 barA			3,0 barA			1,5 barA	
t7	η_{CRD}	ε _{crd}	\dot{m}_2	η_{CRD}	ε _{crd}	\dot{m}_2	η_{CRD}	ε _{crd}	m₂	η_{CRD}	ε _{crd}	m ₂	η_{CRD}	ε _{crd}	<i>ṁ</i> ₂
[-]	[-]	[%]	[-]	[-]	[%]	[-]	[-]	[%]	[-]	[-]	[%]	[-]	[-]	[%]	[-]
60	0,3529	0,4945	0,0408	0,3544	0,9264	0,0432	0,3552	1,1650	0,0446	0,3568	1,6082	0,0470	0,3576	1,8451	0,0483
70	0,3533	0,6123	0,0560	0,3554	1,2087	0,0593	0,3565	1,5385	0,0611	0,3587	2,1520	0,0646	0,3598	2,4804	0,0664
80	0,3536	0,6973	0,0715	0,3563	1,4655	0,0759	0,3578	1,8911	0,0783	0,3606	2,6835	0,0828	0,3621	3,1084	0,0852
							MIESZANKO	WE WYMIENN	IIKI CIEPŁA						
		19,5 barA			10,0 barA			6,6 barA			3,0 barA			1,5 barA	
t7	η_{CRD}	ϵ_{crd}	m ₂	η_{CRD}	ε _{crd}	\dot{m}_2	η_{CRD}	ε _{crd}	\dot{m}_2	η_{CRD}	ε _{crd}	m ₂	η_{CRD}	ε _{crd}	\dot{m}_2
[-]	[-]	[%]	[-]	[-]	[%]	[-]	[-]	[%]	[-]	[-]	[%]	[-]	[-]	[%]	[-]
70	0,3541	0,8539	0,0518	0,3561	1,4180	0,0547	0,3572	1,7283	0,0563	0,3592	2,3024	0,0593	0,3603	2,6080	0,0609
80	0,3549	1,0779	0,0646	0,3574	1,7900	0,0682	0,3588	2,1817	0,0702	0,3613	2,9063	0,0739	0,3627	3,2922	0,0759
90	0,3558	1,3254	0,0784	0,3589	2,2010	0,0828	0,3606	2,6828	0,0852	0,3637	3,5738	0,0897	0,3654	4,0483	0,0921
100	0,3567	1,5798	0,0922	0,3604	2,6234	0,0973	0,3624	3,1976	0,1002	0,3661	4,2597	0,1054	0,3681	4,8252	0,1082
105	0,3571	1,7096	0,0990	0,3611	2,8390	0,1046	0,3633	3,4604	0,1077	0,3673	4,6097	0,1133	0,3695	5,2218	0,1163
110	0,3576	1,8412	0,1059	0,3619	3,0576	0,1119	0,3642	3,7269	0,1152	0,3686	4,9647	0,1212	0,3709	5,6239	0,1244
							MIESZANKO	WE WYMIENN	IIKI CIEPŁA						
		19,5 barA			10,0 barA			6,6 barA			3,0 barA			1,5 barA	
t7	η_{CRD}	ε _{crd}	\dot{m}_2	η_{CRD}	ε _{crd}	\dot{m}_2	η_{CRD}	ε _{crd}	τ,μ	η_{CRD}	ε _{crd}	m ₂	η_{CRD}	ε _{crd}	m₂
[-]	[-]	[%]	[-]	[-]	[%]	[-]	[-]	[%]	[-]	[-]	[%]	[-]	[-]	[%]	[-]
100	0,3538	0,7555	0,1043	0,3578	1,8920	0,1108	0,3600	2,5233	0,1144	0,3641	3,7025	0,1212	0,3664	4,3366	0,1249
110	0,3537	0,7212	0,1214	0,3584	2,0545	0,1292	0,3610	2,7963	0,1335	0,3658	4,1840	0,1415	0,3677	4,7153	0,1381
120	0,3534	0,6388	0,1392	0,3588	2,1787	0,1482	0,3618	3,0368	0,1533	0,3674	4,6447	0,1627	0,3677	4,7153	0,1381
130	0,3529	0,5035	0,1577	0,3591	2,2601	0,1681	0,3625	3,2406	0,1739	0,3688	5,0170	0,1814	0,3677	4,7153	0,1381
140	0,3522	0,3096	0,1768	0,3592	2,2937	0,1887	0,3631	3,4031	0,1953	0,3688	5,0170	0,1814	0,3677	4,7153	0,1381
150	0,3513	0,0553	0,1966	0,3591	2,2778	0,2100	0,3635	3,5226	0,2176	0,3688	5,0170	0,1814	0,3677	4,7153	0,1381
			I			MIESZANKO	OWE WYMIEN	NIKI CIEPŁA O	RAZ POMPĄ S	SKROPLIN					
		19,5 barA			10,0 barA			6,6 barA			3,0 barA			1,5 barA	
t7	η _{CRD}	ε _{CRD}	<u> </u>	η _{CRD}	ε _{crd}	\dot{m}_2	η _{CRD}	ε _{CRD}	\dot{m}_2	η _{CRD}	ε _{CRD}	<u> </u>	η _{CRD}	ε _{CRD}	\dot{m}_2
<u>[-]</u>	[-]	[%]	[-]	<u> </u>	[%]	[-]	<u>[-]</u>	[%]	<u>[-]</u>	<u>[-]</u>	[%]	<u>[-]</u>	<u>[-]</u>	[%]	[-]
100	0,3568	1,6130	0,0939	0,3605	2,6786	0,0992	0,3626	3,2649	0,1021	0,3664	4,3492	0,1075	0,3684	4,9267	0,1103
110	0,3577	1,8754	0,1077	0,3621	3,1143	0,1138	0,3645	3,7960	0,1171	0,3689	5,0567	0,1232	0,3702	5,4317	0,1206
120	0,3587	2,1465	0,1215	0,3637	3,5646	0,1284	0,3664	4,3448	0,1321	0,3715	5,7878	0,1391	0,3702	5,4317	0,1206
130	0,3597	2,4268	0,1355	0,3653	4,0301	0,1431	0,3684	4,9122	0,1472	0,3737	6,4282	0,1526	0,3702	5,4317	0,1206
140	0,3607	2,7161	0,1494	0,3670	4,5105	0,1578	0,3704	5,4977	0,1624	0,3737	6,4282	0,1526	0,3702	5,4317	0,1206
150	0,3617	3,0155	0,1634	0,3687	5,0076	0,1726	0,3726	6,1037	0,1776	0,3737	6,4282	0,1526	0,3702	5,4317	0,1206

Tab. Z2.1 Zbiorcze wyniki obliczeń bilansów cieplnych układów referencyjnych

Z2.2. Układ z zastosowaniem podciśnieniowych powierzchniowych wymienników ciepła

Z2.2.1. Układy jednostopniowego podgrzewania wody zasilającej

Obliczenia bilansu cieplnego układów z podciśnieniowym wymiennikiem ciepła (rys. Z2.13) przeprowadzono, analogicznie jak dla układów referencyjnych, dla różnych poziomów energetycznych pary zasilającej (zgodnie z tabelą 5.1 przedstawionej w rozdziale 5. rozprawy), różnego poziomu podgrzania wody zasilającej {60°C, 70°C, 80°C} oraz dla założonych stopni eżekcji z przedziału $\sigma = 0,143 - 0,667$. Na podstawie wyników obliczeń wyznaczono krzywe zależności sprawności cieplnej układu, strumienia masy pary zasilającej inżektor i strumienia masy pary zasysanej przez inżektor parowy, w funkcji stopnia eżekcji inżektora.

Rys. Z2.13 Schemat cieplno-przepływowy układu z jednostopniowym podgrzewaniem wody zasilającej z zastosowaniem pogrzewacza podciśnieniowego oraz inżektora parowego

Obliczenia przeprowadzono zgodnie z następującym algorytmem:

- 1. Wyznaczenie parametrów pary dla poszczególnych płaszczyznach kontrolnych;
- 2. Obliczenia strumienia masy pary grzewczej dla regeneracyjnego wymiennika:

$$\dot{m}_8 = \dot{m}_7 \frac{\dot{i}_7 - \dot{i}_6}{\dot{i}_8 - \dot{i}_9} \tag{Z2.1}$$

3. Obliczenia strumienia masy pary upustowej zasilającej inżektor parowy

$$\dot{m}_2 = \frac{\dot{m}_8}{(1+\sigma)} \tag{Z2.2}$$

4. Wyznaczenie sprawności cieplnej obiegu regeneracyjnego

$$\eta_{CRP} = \frac{\dot{m}_1(i_1 - i_3) - \dot{m}_2(i_2 - i_3)}{\dot{m}_7(i_1 - i_7)}$$
(Z2.3)

5. Obliczenie stopnia regeneracji układu zgodnie ze wzorem 6.1.

Graficzne przedstawienie wyników obliczeń układów dla różnych temperatur podgrzania wody i różnych parametrów pary upustowej w funkcji stopnia eżekcji przedstawiono na rysunkach Z2.14-Z2.16.

Rys. Z2.14 Zależności temperatury wody zasilającej (t_7), sprawności cieplnej (η_{CRP}), strumienia masy pary zaczepowej (\dot{m}_2) i pary zasysanej przez inżektor (\dot{m}_8), w funkcji stopnia eżekcji (σ), dla założonej temperatury podgrzania kondensatu 60°C, układu z podciśnieniowym wymiennikiem ciepła

Rys. Z2.15 Zależności temperatury wody zasilającej (t_7), sprawności cieplnej (η_{CRP}), strumienia masy pary zaczepowej (\dot{m}_2) i pary zasysanej przez inżektor (\dot{m}_8), w funkcji stopnia eżekcji (σ), dla założonej temperatury podgrzania kondensatu 70°C, układu z podciśnieniowym wymiennikiem ciepła

Rys. Z2.16Zależności temperatury wody zasilającej (t_7), sprawności cieplnej (η_{CRP}), strumienia masy pary zaczepowej (\dot{m}_2) i pary zasysanej przez inżektor (\dot{m}_8), w funkcji stopnia eżekcji (σ), dla założonej temperatury podgrzania kondensatu 80°C, układu z podciśnieniowym wymiennikiem ciepła

			19,5 ba	rA					10 bar	A				6,6 barA					3,0 barA					
	б	η _{CRP}	ε	\dot{m}_2	\dot{m}_8	t ₇	б	η_{CRP}	ε	ṁ₂	т ₈	t ₇	б	η_{CRP}	ε	m ₂	m ₈	t ₇	б	η_{CRP}	ε	m ₂	m ₈	t ₇
	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C
ĺ	0,666667	0,3564	1,5091	0,0279	0,0465	60	0,666667	0,3576	1,8401	0,0290	0,0484	60	0,666667	0,3582	2,0173	0,0296	0,0494	60	0,666667					
ĺ	0,5	0,3558	1,3203	0,0303	0,0455	60	0,5	0,3570	1,6728	0,0316	0,0474	60	0,5	0,3577	1,8625	0,0323	0,0485	60	0,5	0,3589	2,2067	0,0336	0,0504	60
ς	0,429185	0,3555	1,2298	0,0315	0,0450	60	0,429185	0,3567	1,5923	0,0329	0,0470	60	0,429185	0,3574	1,7878	0,0336	0,0481	60	0,429185	0,3587	2,1435	0,0350	0,0501	60
60	0,37594	0,3552	1,1572	0,0324	0,0446	60	0,37594	0,3565	1,5274	0,0339	0,0466	60	0,37594	0,3572	1,7275	0,0347	0,0477	60	0,37594	0,3585	2,0923	0,0362	0,0498	60
	0,333333	0,3550	1,0959	0,0332	0,0442	60	0,333333	0,3563	1,4725	0,0347	0,0463	60	0,333333	0,3570	1,6765	0,0356	0,0475	60	0,333333	0,3583	2,0488	0,0371	0,0495	60
	0,25	0,3545	0,9671	0,0348	0,0435	60	0,25	0,3559	1,3568	0,0365	0,0457	60	0,25	0,3566	1,5686	0,0375	0,0469	60	0,25	0,3580	1,9567	0,0392	0,0490	60
	0,2	0,3542	0,8835	0,0359	0,0430	60	0,2	0,3556	1,2815	0,0377	0,0453	60	0,2	0,3564	1,4982	0,0387	0,0465	60	0,2	0,3578	1,8964	0,0406	0,0487	60
	0,166667	0,3540	0,8249	0,0366	0,0427	60	0,166667	0,3555	1,2285	0,0385	0,0450	60	0,166667	0,3562	1,4487	0,0396	0,0462	60	0,166667	0,3576	1,8538	0,0415	0,0484	60
	0,142857	0,3539	0,7815	0,0372	0,0425	60	0,142857	0,3553	1,1892	0,0392	0,0447	60	0,142857	0,3561	1,4119	0,0402	0,0460	60	0,142857	0,3575	1,8221	0,0422	0,0483	60
			19,5 ba	rA					10 bar	A					6,6 b	arA		•		•	3,0 ba	rA		
	б	η _{CRP}	ε	\dot{m}_2	\dot{m}_8	t ₇	б	η_{CRP}	ε	m ₂	т ₈	t ₇	б	η_{CRP}	ε	m ₂	m ₈	t ₇	б	η_{CRP}	ε	m ₂	т́ ₈	t ₇
	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C
	0,666667	0,3579	1,9288	0,0365	0,0609	68,3	0,666667	0,3586	2,1340	0,0340	0,0567	64,9	0,666667	0,3587	2,1598	0,0318	0,0530	62,0261	0,666667					
	0,5	0,3573	1,7534	0,0416	0,0624	70	0,5	0,3590	2,2411	0,0434	0,0651	70	0,5	0,3594	2,3519	0,0417	0,0625	67,7	0,5	0,3594	2,34376	0,0358	0,0537	61,768
ပ	0,429185	0,3569	1,6279	0,0432	0,0617	70	0,429185	0,3586	2,1295	0,0451	0,0645	70	0,429185	0,3596	2,4005	0,0462	0,0660	70	0,429185	0,3599	2,5022	0,0410	0,0586	64,7
8	0,37594	0,3565	1,5274	0,0444	0,0611	70	0,37594	0,3583	2,0397	0,0465	0,0640	70	0,37594	0,3593	2,3169	0,0477	0,0656	70	0,37594	0,3604	2,6293	0,0461	0,0634	67,3
	0,333333	0,3562	1,4426	0,0455	0,0607	70	0,333333	0,3580	1,9637	0,0477	0,0636	70	0,333333	0,3590	2,2462	0,0489	0,0652	70	0,333333	0,3607	2,7367	0,0505	0,0674	69,6
	0,25	0,3556	1,2646	0,0477	0,0597	70	0,25	0,3575	1,8036	0,0501	0,0627	70	0,25	0,3585	2,0968	0,0515	0,0643	70	0,25	0,3604	2,6353	0,0539	0,0674	70
	0,2	0,3552	1,1492	0,0492	0,0590	70	0,2	0,3571	1,6993	0,0517	0,0621	70	0,2	0,3582	1,9993	0,0532	0,0638	70	0,2	0,3601	2,5516	0,0557	0,0669	70
	0,166667	0,3549	1,0682	0,0502	0,0586	70	0,166667	0,3568	1,6260	0,0529	0,0617	70	0,166667	0,3579	1,9307	0,0543	0,0634	70	0,166667	0,3599	2,4925	0,0571	0,0666	70
	0,142857	0,3547	1,0083	0,0509	0,0582	70	0,142857	0,3567	1,5716	0,0537	0,0614	70	0,142857	0,3577	1,8798	0,0552	0,0631	70	0,142857	0,3597	2,4485	0,0580	0,0663	70
			19,5 ba	rA					10 bar	A				1	6,6 b	arA		1		1	3,0 ba	rA	1	
	б	η _{CRP}	ε	\dot{m}_2	\dot{m}_8	t7	б	η_{CRP}	ε	m ₂	<i>т</i> ₈	t7	б	η_{CRP}	ε	m ₂	m ₈	t7	б	η_{CRP}	ε	m ₂	m ₈	t ₇
	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C
	0,666667	0,3579	1,9288	0,0365	0,0609	68,3	0,666667	0,3586	2,1340	0,0340	0,0567	64,9	0,666667	0,3587	2,1598	0,0318	0,0530	62,0	0,666667					
	0,5	0,3583	2,0260	0,0492	0,0738	76,5	0,5	0,3594	2,3495	0,0457	0,0686	71,9	0,5	0,3594	2,3519	0,0417	0,0625	67,7	0,5	0,3594	2,34376	0,0358	0,0537	61,768
S	0,429185	0,3582	2,0068	0,0553	0,0790	80	0,429185	0,3597	2,4450	0,0527	0,0753	76,0	0,429185	0,3601	2,5503	0,0492	0,0703	72,4	0,429185	0,3599	2,5022	0,0410	0,0586	64,7
8	0,37594	0,3577	1,8771	0,0569	0,0783	80	0,37594	0,3600	2,5112	0,0589	0,0810	79,4	0,37594	0,3604	2,6413	0,0551	0,0758	75,6	0,37594	0,3604	2,6293	0,0461	0,0634	67,3
	0,333333	0,3573	1,7677	0,0583	0,0777	80	0,333333	0,3597	2,4407	0,0611	0,0815	80	0,333333	0,3607	2,7191	0,0605	0,0806	78,4	0,333333	0,3607	2,7367	0,0505	0,0674	69,6
	0,25	0,3565	1,5381	0,0611	0,0764	80	0,25	0,3590	2,2338	0,0642	0,0803	80	0,25	0,3603	2,6128	0,0660	0,0825	80	0,25	0,3615	2,9606	0,0612	0,0765	74,8
	0,2	0,3560	1,3892	0,0629	0,0755	80	0,2	0,3585	2,0991	0,0663	0,0795	80	0,2	0,3599	2,4867	0,0681	0,0817	80	0,2	0,3621	3,1082	0,0692	0,0830	78,6
	0,166667	0,3557	1,2848	0,0642	0,0749	80	0,166667	0,3582	2,0044	0,0677	0,0790	80	0,166667	0,3596	2,3980	0,0696	0,0812	80	0,166667	0,3621	3,1240	0,0732	0,0853	80,0
	0,142857	0,3554	1,2076	0,0652	0,0745	80	0,142857	0,3579	1,9342	0,0688	0,0786	80	0,142857	0,3593	2,3322	0,0708	0,0809	80	0,142857	0,3619	3,0671	0,0744	0,0850	80

Tab. Z2.2 Zbiorcze wyniki obliczeń dla podciśnieniowych wymienników ciepła zasilanych z inżektora regeneracyjnego dla temperatur kondensatu 60,70, 80 °C

Z2.2.2. Dwustopniowe podgrzewanie wody zasilającej z wykorzystaniem inżektorów parowych

Analizie poddano dwa układy: układ równoległy (Rys. Z2.17) oraz układ szeregowy (Rys. Z2.18). Obliczenia przeprowadzono dla układu zasilanego parą upustową 3.0 BarA, który uzyskał najwyższe wartości stopnia regeneracji dla układów jednostopniowych.

Przeanalizowano dwa warianty dla obydwu układów. W wariancie nr 1 w podgrzewaczu pierwszego stopnia kondensat podgrzewany jest do temperatury $t_7=60$ °C, dla wariantu nr 2 do temperatury nasycenia (odpowiadającej parze opuszczającej inżektor pierwszego stopnia) pomniejszonej o 5 K ($t_7 = 61,8$ °C). Kondensat w wymienniku drugiego stopnia ulega podgrzaniu do temperatury $t_8 = 80$ °C. Skropliny pary grzewczej z podgrzewacza wyższego stopnia kierowane są w celu przechłodzenia do podgrzewacza niższego stopnia. Trzeci układ obliczono dla zoptymalizowanych parametrów inżektora drugiego stopnia wariantu 2, tak aby ciśnienie pary opuszczającej urządzenie było jak najbliższe ciśnieniu nasycenia w wymienniku przy możliwie wysokim stopniu eżekcji. Stopień eżekcji dobrano na podstawie równania, wyznaczonego w rozdziale 5. rozprawy (Rys. 5.2), opisującego zależność $p_l = f(\sigma)$.

Układ równoległy CR P 2s rów.

Na rysunku Z2.17 przedstawiono schemat cieplno-przepływowy regeneracyjnego układu dwustopniowego wykorzystującego dwa równoległe inżektory parowe. Obydwa inżektory zasilane są z tego samego upustu pary oraz zasysają parę odlotową z turbiny napędu głównego.

Obliczenia przeprowadzono zgodnie z algorytmem (zależności Z2.4-Z2.13):

- 1. Wyznaczenie parametrów pary w poszczególnych płaszczyznach kontrolnych
- 2. Z bilansu energetycznego podgrzewacza 2-go stopnia:

$$\dot{m}_{11} = \dot{m}_{12} = \dot{m}_8 \frac{\dot{i}_8 - \dot{i}_7}{\dot{i}_{11} - \dot{i}_{12}} \tag{Z2.4}$$

3. Z bilansu energetycznego podgrzewacza 1-go stopnia:

$$\dot{m}_9 = \frac{\dot{m}_7(i_7 - i_6) - \dot{m}_{12}(i_{12} - i_{10})}{i_9 - i_{10}} \tag{Z2.5}$$

4. Na podstawie założonych stopni eżekcji oraz wyznaczonych zapotrzebowanych strumieni masy pary grzewczej poszczególnych wymienników wyznaczono strumienie masy pary zasilającej inżektory oraz pary zasysanej:

$$\dot{m}_{c1} = \frac{\dot{m}_9}{(1+6_1)}; \ \dot{m}_{x1} = \frac{\dot{m}_9}{(1+\frac{1}{6_1})}$$
(Z2.6)

$$\dot{m}_{c2} = \frac{\dot{m}_{11}}{(1+6_2)}; \ \dot{m}_{x2} = \frac{\dot{m}_{11}}{(1+\frac{1}{6_2})}$$
(Z2.7)

5. Pozostałe strumienie masy wyznaczono na podstawie wzorów:

$$\dot{m}_2 = \dot{m}_{x1} + \dot{m}_{x2} \tag{Z2.8}$$

$$\dot{m}_3 = 1 - \dot{m}_2 \tag{Z2.9}$$

$$\dot{m}_4 = \dot{m}_3 - (\dot{m}_{x1} + \dot{m}_{x2}) \tag{Z2.10}$$

$$\dot{m}_{10} = \dot{m}_9 + \dot{m}_{12} \tag{Z2.11}$$

6. Sprawność oraz stopień regeneracji wyznaczono ze wzorów:

$$\eta_{CRP2s \ rów} = \frac{\dot{m}_1(i_1 - i_3) - \dot{m}_2(i_2 - i_3)}{\dot{m}_8(i_1 - i_8)} \tag{Z2.12}$$

$$\mathcal{E}_{CRP2s\,rów} = \frac{\eta_{CRP2s\,rów} - \eta_{CRref}}{\eta_{CRref}} \tag{Z2.13}$$

Rys. Z2.17 Schemat cieplno-przepływowy dwustopniowego układu regeneracyjnego z inżektorami parowymi w układzie równoległym CR P 2s rów

Wyniki obliczeń poszczególnych wariantów przedstawiono w tabelach Z2.3, Z2.4 oraz Z2.5.

Płaszczyzna					б =
kontrolna	P _{abs}	t	i	'n	01-
Numer	[barA]	[°C]	[kJ/kg]	[kg/s]	б ₂ =
1	59,5	520	3470	1	$\eta_{CRP2srów} =$
2	3	245	2803	0,0629	ε _{CRP2srów} =
3	0,066	38	2300	0,9371	
x ₁	0,066	38	2300	0,0164	
x ₂	0,066	38	2300	0,0050	
4	0,05	32	2290	0,9157	
5	0,05	32	138	1	
6	70	32	138	1	
7	70	60	257,0	1	
8	70	80	340,5	1	
9	0,271	73,4	2633,5	0,0492	
10	0,25	65	272,1	0,0843	
11	0,611	124,4	2729,3	0,0352	
12	0,579	85	356,0	0,0352	
c ₁	3	245	2803	0,0328	
c ₂	3	245	2803	0,0302	

Tab. Z2.3 Wyniki obliczeń układu dwustopniowego równoległego dla wariantu nr 1 (t₇=60 °C)

Płaszczyzna				
kontrolna	P _{abs}	t	i	'n
Numer	[barA]	[°C]	[kJ/kg]	[kg/s]
1	59,5	520	3470	1
2	3,0	245	2803	0,0626
3	0,066	38	2300	0,9374
x ₁	0,066	38	2300	0,0176
x ₂	0,066	38	2300	0,0046
4	0,05	32	2290	0,9153
5	0,05	32	138	1
6	70	32	138	1
7	70	61,8	264,5	1
8	70	80	340,5	1
9	0,271	73,4	2633,5	0,0527
10	0,271	66,8	279,6	0,0847
11	0,611	124,4	2729,3	0,0320
12	0,579	85	356,0	0,0320
c ₁	3	245	2803	0,0351
c ₂	3	245	2803	0,0274

б ₁ =	0,500
$\mathbf{G}_2 =$	0,167
$\eta_{CRP2srów} =$	0,36381
$\epsilon_{CRP2srów} =$	3,6072

0,500

0,167

0,36375

3,5917

Płaszczyzna kontrolna	P _{abs}	t	i	'n	б ₁ =	0,500
Numer	[barA]	[°C]	[kJ/kg]	[kg/s]	б ₂ =	0,182
1	59,5	520	3470	1	$\eta_{CRP2srów} =$	0,36385
2	3,0	245	2803	0,0623	$\epsilon_{CRP2srów} =$	3,6207
3	0,066	38	2300	0,9377		
x ₁	0,066	38	2300	0,0176		
x ₂	0,066	38	2300	0,0049		
4	0,05	32	2290	0,9152		
5	0,05	32	138	1		
6	70	32	138	1		
7	70	61,8	264,5	1		
8	70	80	340,6	1		
9	0,271	73,4	2633,5	0,0527		
10	0,271	66,8	279,6	0,0848		
11	0,58	121,4	2723,7	0,0321		
12	0,579	85	356,0	0,0321		
c ₁	3	245	2803	0,0351		
c ₂	3	245	2803	0,0272		

Tab. Z2.5 Wyniki obliczeń układu dwustopniowego równoleg
łego dla zoptymalizowanego wariantu nr 2 $(t_7\!\!=\!\!61,\!8~^\circ\!C)$

Układ szeregowy CR P 2s szer.

Szeregowy układ regeneracyjnego podgrzewania wody, którego schemat cieplnoprzepływowy przedstawiono na rysunku Z2.18 wykorzystuje dwa inżektory parowe zasilane ze wspólnego upustu pary. Inżektor pierwszego stopnia zasysa parę odlotową z turbiny napędu głównego. Inżektor drugiego stopnia zasysa część strumienia pary odlotowej z inżektora pierwszego stopnia. Pozostała część strumienia masy tej pary zasila podciśnieniowy podgrzewacz pierwszego stopnia. Podgrzewając wodę kotłową do założonej temperatury. Inżektor drugiego stopnia zasila kolejny podgrzewacz, z którego skropliny kierowane są do podgrzewacza pierwszego stopnia, w celu przechłodzenia a następnie wraz z resztą skroplin trafiają do skraplacza.

Rys. Z2.18 Schemat cieplno-przepływowy dwustopniowego układu regeneracyjnego wykorzystującego inżektory parowe – układ równoległy CRP 2s szeregowy

Na potrzeby bilansu konieczne jest wyznaczenie parametrów pracy inżektora zgodnie z algorytmem przedstawionym w rozdziale 4. Wyznaczone wielkości przedstawiono w tabeli Z2.6.

Obliczenia szeregowego układu regeneracyjnego rozwiązując układ równań Z2.14-Z2.23 zgodnie z algorytmem:

1. Z bilansu energetycznego podgrzewacza 2-go stopnia:

$$\dot{m}_{11} = \dot{m}_{12} = \dot{m}_8 \frac{\dot{i}_8 - \dot{i}_7}{\dot{i}_{11} - \dot{i}_{12}} \tag{Z2.14}$$

2. Z bilansu energetycznego podgrzewacza 2-go stopnia:

$$\dot{m}_9 = \frac{\dot{m}_1(i_7 - i_6) - \dot{m}_{12}(i_{12} - i_{10})}{i_9 - i_{10}} \tag{Z2.15}$$

3. Na podstawie założonych stopni eżekcji oraz wyznaczonych zapotrzebowanych strumieni masy pary grzewczej poszczególnych wymienników wyznaczono strumienie masy pary zasilającej inżektory oraz pary zasysanej:

$$\dot{m}_{c2} = \frac{\dot{m}_{11}}{(1+6_2)}; \qquad \dot{m}_{x2} = \frac{\dot{m}_{11}}{(1+\frac{1}{6_2})}$$
 (Z2.16)

$$\dot{m}_{c1} = \frac{\dot{m}_9 + \dot{m}_{x2}}{(1+6_1)} = \frac{\dot{m}_{l1}}{(1+6_1)}; \qquad \dot{m}_{x1} = \frac{\dot{m}_9 + \dot{m}_{x2}}{(1+\frac{1}{6_1})} = \frac{\dot{m}_{l1}}{(1+\frac{1}{6_1})}$$
(Z2.17)

4. Pozostałe strumienie masy wyznaczono na podstawie równań:

$$\dot{m}_2 = \dot{m}_{x1} + \dot{m}_{x2}$$
 (Z2.18)
 $\dot{m}_2 = 1 - \dot{m}$ (Z2.19)

$$\dot{m}_3 = 1 - \dot{m}_2$$
 (22.19)

$$\dot{m}_4 = \dot{m}_3 - \dot{m}_{x1} \tag{22.20}$$

$$\dot{m}_{10} = \dot{m}_9 + \dot{m}_{12} \tag{Z2.21}$$

5. Sprawność oraz stopień regeneracji wyznaczono ze równań:

$$\eta_{CRP2s\,szer} = \frac{\dot{m}_1(i_1 - i_3) - \dot{m}_2(i_2 - i_3)}{\dot{m}_8(i_1 - i_8)} \tag{Z2.22}$$

$$\mathcal{E}_{CRP2s \ szer} = \frac{\eta_{CRP2s \ szer} - \eta_{CRref}}{\eta_{CRref}} \tag{Z2.23}$$

Tab. Z2.6 Parametry pracy inżektora drugiego stopnia zasilanego z upustu 3,0 barA i zasysającego parę z inżektora pierwszego stopnia o ciśnieniu 0,271 barA

		Parametry pracy inżektora drugiego stopnia zasilanego z upustu	tu 3,0 barA i zasysającego parę z inżektora pierwszego stopnia o ciśnieniu 0,271 barA													
б	[-]	Założony stopień eżekcji	0,667	0,530	0,500	0,429	0,376	0,333	0,250	0,200	0,167	0,143				
pc	[BarA]	Ciśnieni pary zasilającej	3.0													
ic	[kJ/kg]	Entalpia pary zasilającej	2803													
vc	[m3/kg	Objętość właściwa pary zasil.	0,667416													
p _x	[BarA]	Ciśnienie pary zasysanej	0,271													
wn	[m/s]	Prędkość rozprężonej pary	zprężonej pary 865,0554133													
İ _{Nizen}	[kJ/kg]	Entalpia pary dla izentropowego rozprężania	2408,09													
i _N	[kJ/kg]	Entalpia pary za dyszą					2427	,8355				-				
w _d	[m/s]	Prędkość pary przed dyfuzorem	544,1	592,8	604,6	634,6	659,1	680,2	725,5	755,8	777,4	793,5				
i _D	[kJ/kg]	Entalpia pary przed dyfuzorem	2614,5	2601,2	2597,6	2588,2	2579,9	2572,4	2555,0	2542,5	2533,1	2525,8				
i _{Lizen}	[kJ/kg]	Entalpia mieszaniny pary dla izentropowego sprężania	2721,3	2728,2	2729,8	2734,0	2737,3	2740,1	2746,0	2749,8	2752,5	2754,5				
iL	[kJ/kg]	Entalpia mieszaniny pary za dyfuzorem	2733,2	2742,3	2744,5	2750,1	2754,8	2758,7	2767,2	2772,9	2776,9	2780,0				
tı	[°C]	Temperatura mieszaniny pary za dyfuzorem	126,0	130,9	132,1	135,4	137,8	140,0	144,7	147,9	150,3	152,0				
p _l	[BarA]	Ciśnienie pary za dyfuzorem	0,514	0,581	0,6	0,652	0,7	0,746	0,861	0,952	1,026	1,087				

Wyniki obliczeń poszczególnych wariantów zamieszczono w tabelach Z2.7, Z2.8 oraz Z2.9.

Płaszczyzna kontrolna	P _{abs}	t	1	'n	б ₁ =
Numer	[barA]	[°C]	[kJ/kg]	[kg/s]	$6_2 =$
1	59,5	520	3470	1	$\eta_{CRP2sszer} =$
2	3	245	2803	0,0639	$\epsilon_{CRP2ssze} =$
3	0,066	38	2300	0,9361	
\mathbf{x}_1	0,066	38	2300	0,0203	
x ₂	0,271	73,4	2633,5	0,0117	
4	0,05	32	2290	0,9159	
5	0,05	32	138	1	
6	70	32	138	1	
7	70	60,0	257,0	1	
8	70	80	340,6	1	
9	0,271	73,4	2633,5	0,0492	
10	0,25	65	272,1	0,0492	
11	0,6	132,1	2744,5	0,0350	
12	0,579	85	356,0	0,0350	
c ₁	3	245	2803	0,0405	
c ₂	3	245	2803	0,0233	
l_1	0,271	73,4	2633,5	0,0608	

Tab. Z2.7 Wyniki obliczeń układu dwustopniowego szeregowego dla wariantu nr 1 (t₇=60 °C)

Tab. Z2.8 Wyniki obliczeń układu dwustopniowego szeregowego dla wariantu nr 2 (t7=61,8 °C)

Płaszczyzna kontrolna	P _{abs}	t	i	'n
Numer	[barA]	[°C]	[kJ/kg]	[kg/s]
1	59,5	520	3470	1
2	3	245	2803	0,0636
3	0,066	38	2300	0,9364
x ₁	0,066	38	2300	0,0212
x ₂	0,308	82,2	2650,1	0,0106
4	0,05	32	2290	0,9153
5	0,05	32	138	1
6	70	32	138	1
7	70	61,8	264,45	1
8	70	80	340,55	1
9	0,271	73,4	2633,53	0,0529
10	0,271	66,8	284,69	0,0529
11	0,6	132,1	2744,5	0,0319
12	0,579	85	356,02	0,0319
c ₁	3	245	2803	0,0423
c ₂	3	245	2803	0,0212
l ₁	0,271	73,4	2633,53	0,0635
$\begin{array}{c} c_1 \\ c_2 \\ l_1 \end{array}$	3 3 0,271	245 245 73,4	2803 2803 2633,53	0, 0, 0,

$\mathbf{G}_1 =$	0,500
$6_2 =$	0,500
$\eta_{CRP2sszer} =$	0,36365
$\epsilon_{CRP2ssze} =$	3,5628

0,500 0,500 0,36360 3,5495

Płaszczyzna kontrolna	P _{abs}	t	i	'n	$\mathbf{Q}^{\mathrm{l}}=$	0,500
Numer	[barA]	[°C]	[kJ/kg]	[kg/s]	б ₂ =	0,530
1	59,5	520	3470	1	$\eta_{CRP2sszer} =$	0,36367
2	3	245	2803	0,0635	$\epsilon_{CRP2ssze} =$	3,5679
3	0,066	38	2300	0,9365		
X ₁	0,066	38	2300	0,0213		
x ₂	0,308	82,2	2650,1	0,0110		
4	0,05	32	2290	0,9152		
5	0,05	32	138	1		
6	70	32	138	1		
7	70	61,8	264,45	1		
8	70	80,1	340,55	1		
9	0,271	73,4	2633,53	0,0529		
10	0,271	66,8	284,69	0,0529		
11	0,581	130,9	2742,3	0,0319		
12	0,581	85,1	356,45	0,0319		
c ₁	3	245	2803	0,0426]	
c ₂	3	245	2803	0,0208]	
11	0,271	73,4	2633,53	0,0639		

Tab. Z2.9 Wyniki obliczeń układu dwustopniowego szeregowego dla zoptymalizowanego wariantu nr 2 (t7=61,8 $^\circ\mathrm{C})$

Z2.3. Układ z zastosowaniem zbiornika mieszankowego

Na rysunku Z2.19 przedstawiono schemat cieplno-przepływowy układu realizującego regeneracyjny obieg Clausiusa-Rankine'a z zastosowanie zbiornika mieszankowego zasilanego parą odlotową z regeneracyjnego inżektora parowego.

Rys. Z2.19 Schemat cieplno-przepływowy układu z jednostopniowym podgrzewaniem wody zasilającej z wykorzystaniem mieszankowego wymiennika ciepła zasilanego regeneracyjnym inżektorem parowym

Obliczenia przeprowadzono według algorytmu Z2.24-Z2.26.

- 1. Wyznaczenie parametrów pary dla poszczególnych płaszczyznach kontrolnych;
- 2. Obliczenia strumienia masy pary grzewczej dla regeneracyjnego wymiennika: ciepła:

$$\dot{m}_9 = \dot{m}_7 \frac{\dot{i}_7 - \dot{i}_6}{\dot{i}_8 - \dot{i}_6} \tag{Z2.24}$$

3. Obliczenia strumienia masy pary upustowej zasilającej inżektor parowy

$$\dot{m}_2 = \frac{\dot{m}_9}{(1+\sigma)} \tag{Z2.25}$$

4. Wyznaczenie sprawności cieplnej obiegu regeneracyjnego

$$\eta_{CRP} = \frac{\dot{m}_1(i_1 - i_3) - \dot{m}_2(i_2 - i_3)}{\dot{m}_8(i_1 - i_8)}$$
(Z2.26)

5. Obliczenie stopnia regeneracji układu zgodnie ze wzorem 6.1.

Graficzne przedstawienie wyników obliczeń układów dla różnych temperatur podgrzania wody i różnych parametrów pary upustowej w funkcji stopnia eżekcji zamieszono na rysunkach Z2.20-Z2.25.

Rys. Z2.20 Zależności temperatury wody zasilającej (t_7), sprawności cieplnej (η_{CRP}), strumienia masy pary zaczepowej (\dot{m}_2) i pary zasysanej przez inżektor (\dot{m}_8), w funkcji stopnia eżekcji (σ), dla założonej temperatury podgrzania kondensatu 70°C, układu z mieszankowym wymiennikiem ciepła

Rys. Z2.21 Zależności temperatury wody zasilającej (t_7), sprawności cieplnej (η_{CRP}), strumienia masy pary zaczepowej (\dot{m}_2) i pary zasysanej przez inżektor (\dot{m}_8), w funkcji stopnia eżekcji (σ), dla założonej temperatury podgrzania kondensatu 80°C, układu z mieszankowym wymiennikiem ciepła

Dla zakresów temperatur do 80 °C, możliwe jest zasilanie zbiornika mieszankowego z każdego z rozpatrywanych upustów pary. Tak jak w przypadku powierzchniowych wymienników ciepła stosowanie zasilania z możliwie najniższego poziomu energetycznego poprawia stopień regeneracji układu. Stosowanie możliwie wysokiego stopnia eżekcji dla inżektora regeneracyjnego powoduje wzrost sprawności układu. Trend ten jednak załamuje się w momencie uzyskania przez parę odlotową ciśnienia nasycenia dla założonej temperatury podgrzania wody (funkcja $\eta_{CRD} = f(\sigma)$ osiąga maksimum). Dalsze zwiększanie stopnia eżekcji tak jak dla poprzednich układów skutkuje koniecznością obniżenia temperatury wody zasilającej kocioł co negatywnie przekłada się na wartość stopnia regeneracji układu.

Rys. Z2.22 Zależności temperatury wody zasilającej (t_7), sprawności cieplnej (η_{CRP}), strumienia masy pary zaczepowej (\dot{m}_2) i pary zasysanej przez inżektor (\dot{m}_8), w funkcji stopnia eżekcji (σ), dla założonej temperatury podgrzania kondensatu 90°C, układu z mieszankowym wymiennikiem ciepła

Rys. Z2. 23 Zależności temperatury wody zasilającej (t_7), sprawności cieplnej (η_{CRP}), strumienia masy pary zaczepowej (\dot{m}_2) i pary zasysanej przez inżektor (\dot{m}_8), w funkcji stopnia eżekcji (σ), dla założonej temperatury podgrzania kondensatu 100°C, układu z mieszankowym wymiennikiem ciepła

Rys. Z2.24Zależności temperatury wody zasilającej (t_7), sprawności cieplnej (η_{CRP}), strumienia masy pary zaczepowej (\dot{m}_2) i pary zasysanej przez inżektor (\dot{m}_8), w funkcji stopnia eżekcji (σ), dla założonej temperatury podgrzania kondensatu 105°C, układu z mieszankowym wymiennikiem ciepła

Rys. Z2.25 Zależności temperatury wody zasilającej (t_7), sprawności cieplnej (η_{CRP}), strumienia masy pary zaczepowej (\dot{m}_2) i pary zasysanej przez inżektor (\dot{m}_8), w funkcji stopnia eżekcji (σ), dla założonej temperatury podgrzania kondensatu 110°C, układu z mieszankowym wymiennikiem ciepła

W tabelach Z2.10 oraz Z2.11 przedstawiono zbiorcze wyniki obliczeń bilansów energetycznych dla układów z mieszankowymi wymiennikami ciepła w zależności od zastosowane ciśnienia pary upustowej zasilającej inżektor parowy oraz założonej temperatury podgrzewu wody zasilającej kocioł.

	19,5 barA								10 ba	ırA					6,6 ba	arA					3,0 ba	ırA					
	б	η_{CRD}	ϵ_{CRD}	\dot{m}_2	m ₉	t ₇	б	η _{crd}	ε _{CRD}	m ₂	<i>ṁ</i> 9	t ₇	б	η _{crd}	ε _{CRD}	m ₂	m ₉	t ₇	б	η_{CRD}	ε _{crd}	m ₂	m ₉	t ₇			
	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C			
	0,6667	0,3586	2,1376	0,0345	0,0575	70,0	0,6667	0,3598	2,4768	0,0350	0,0583	69,0	0,6667	0,3597	2,4479	0,0327	0,0544	66,0	0,6667								
	0,5000	0,3578	1,8990	0,0375	0,0562	70,0	0,5000	0,3591	2,2703	0,0382	0,0572	70,0	0,5000	0,3591	2,2734	0,0357	0,0536	70,0	0,5000								
ပ	0,4292	0,3574	1,7845	0,0389	0,0556	70,0	0,4292	0,3588	2,1707	0,0397	0,0567	70,0	0,4292	0,3588	2,1890	0,0372	0,0531	70,0	0,4292	0,3614	2,9192	0,0435	0,0621	68,0			
70	0,3759	0,3571	1,6925	0,0401	0,0551	70,0	0,3759	0,3585	2,0903	0,0409	0,0563	70,0	0,3759	0,3586	2,1208	0,0384	0,0528	70,0	0,3759	0,3612	2,8538	0,0449	0,0618	70,0			
	0,3333	0,3568	1,6148	0,0411	0,0547	70,0	0,3333	0,3582	2,0224	0,0420	0,0560	70,0	0,3333	0,3584	2,0630	0,0394	0,0525	70,0	0,3333	0,3610	2,7984	0,0461	0,0615	70,0			
	0,2500	0,3562	1,4514	0,0431	0,0539	70,0	0,2500	0,3577	1,8788	0,0442	0,0552	70,0	0,2500	0,3580	1,9408	0,0415	0,0519	70,0	0,2500	0,3606	2,6805	0,0488	0,0609	70,0			
	0,2000	0,3559	1,3453	0,0444	0,0533	70,0	0,2000	0,3574	1,7852	0,0456	0,0548	70,0	0,2000	0,3577	1,8608	0,0429	0,0515	70,0	0,2000	0,3603	2,6032	0,0505	0,0606	70,0			
	0,1667	0,3556	1,2708	0,0454	0,0529	70,0	0,1667	0,3572	1,7193	0,0466	0,0544	70,0	0,1667	0,3575	1,8045	0,0439	0,0512	70,0	0,1667	0,3601	2,5486	0,0517	0,0603	70,0			
	0,1429	0,3554	1,2156	0,0461	0,0527	70,0	0,1429	0,3570	1,6704	0,0474	0,0542	70,0	0,1429	0,3573	1,7627	0,0446	0,0510	70,0	0,1429	0,3599	2,5079	0,0526	0,0601	70,0			
	19,5 barA								10 ba	ırA					6,6 ba	arA					3,0 ba	0 barA					
	б	η_{CRD}	ε _{crd}	\dot{m}_2	m ₉	t ₇	б	η_{CRD}	ε _{crd}	\dot{m}_2	<i>m</i> ₉	t ₇	б	η_{CRD}	ε _{crd}	\dot{m}_2	<i>m</i> ₉	t ₇	б	η_{CRD}	ε _{crd}	\dot{m}_2	m ₉	t ₇			
	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C			
	0,6667	0,3593	2,3311	0,0376	0,0627	73,3	0,6667	0,3600	2,5242	0,0355	0,0591	69,6	0,6667	0,3601	2,5418	0,0336	0,0560	67,1	0,6667								
80 °C	0,5000	0,3597	2,4364	0,0477	0,0716	80,0	0,5000	0,3610	2,8030	0,0464	0,0696	76 <i>,</i> 9	0,5000	0,3612	2,8541	0,0440	0,0659	73,7	0,5000								
	0,4292	0,3592	2,2883	0,0496	0,0708	80,0	0,4292	0,3613	2,8808	0,0517	0,0739	80,0	0,4292	0,3617	3,0103	0,0499	0,0713	77,4	0,4292	0,3614	2,9086	0,0428	0,0612	69,7			
	0,3759	0,3588	2,1692	0,0510	0,0702	80,0	0,3759	0,3609	2,7749	0,0533	0,0733	80,0	0,3759	0,3620	3,1012	0,0545	0,0750	80,0	0,3759	0,3619	3,0604	0,0474	0,0653	72,3			
	0,3333	0,3584	2,0687	0,0523	0,0697	80,0	0,3333	0,3606	2,6853	0,0546	0,0729	80,0	0,3333	0,3617	3,0180	0,0559	0,0746	80,0	0,3333	0,3623	3,1862	0,0516	0,0688	74,6			
	0,2500	0,3577	1,8572	0,0549	0,0686	80,0	0,2500	0,3599	2,4962	0,0575	0,0719	80,0	0,2500	0,3611	2,8422	0,0589	0,0737	80,0	0,2500	0,3633	3,4612	0,0613	0,0766	79,8			
	0,2000	0,3572	1,7198	0,0566	0,0679	80,0	0,2000	0,3595	2,3728	0,0594	0,0713	80,0	0,2000	0,3607	2,7273	0,0609	0,0731	80,0	0,2000	0,3630	3,3758	0,0636	0,0764	80,0			
	0,1667	0,3568	1,6233	0,0578	0,0674	80,0	0,1667	0,3592	2,2861	0,0607	0,0708	80,0	0,1667	0,3604	2,6463	0,0623	0,0727	80,0	0,1667	0,3628	3,3066	0,0652	0,0760	80,0			
	0,1429	0,3566	1,5519	0,0587	0,0671	80,0	0,1429	0,3589	2,2217	0,0617	0,0705	80,0	0,1429	0,3602	2,5862	0,0633	0,0724	80,0	0,1429	0,3626	3,2550	0,0663	0,0758	80,0			
			19,5 bi	arA					10 ba	ırA					6,6 ba	arA					3,0 ba	ırA					
	б	η_{CRD}	ε _{crd}	\dot{m}_2	m ₉	t ₇	б	η _{CRD}	ε _{crd}	\dot{m}_2	<i>m</i> ₉	t ₇	б	η_{CRD}	ε _{CRD}	\dot{m}_2	m ₉	t7	б	η _{crd}	ε _{CRD}	\dot{m}_2	m ₉	t ₇			
	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C			
ĺ	0,6667	0,3586	2,1140	0,0343	0,0571	69,7	0,6667	0,3600	2,5242	0,0355	0,0591	69,6	0,6667	0,3601	2,5418	0,0336	0,0560	67,1	0,6667								
	0,5000	0,3600	2,5203	0,0493	0,0739	81,5	0,5000	0,3610	2,8030	0,0464	0,0696	76,9	0,5000	0,3612	2,8541	0,0440	0,0659	73,7	0,5000								
ပ	0,4292	0,3603	2,6050	0,0560	0,0800	86,1	0,4292	0,3615	2,9408	0,0527	0,0753	80,9	0,4292	0,3617	3,0103	0,0499	0,0713	77,4	0,4292	0,3614	2,9086	0,0428	0,0612	69,7			
6	0,3759	0,3605	2,6682	0,0619	0,0852	90,0	0,3759	0,3619	3,0557	0,0583	0,0803	84,4	0,3759	0,3620	3,0899	0,0543	0,0747	79,8	0,3759	0,3619	3,0604	0,0474	0,0653	72,3			
	0,3333	0,3601	2,5446	0,0635	0,0846	90,0	0,3333	0,3622	3,1548	0,0635	0,0847	87,6	0,3333	0,3626	3,2540	0,0600	0,0800	83,4	0,3333	0,3623	3,1862	0,0516	0,0688	74,6			
	0,2500	0,3592	2,2844	0,0666	0,0833	90,0	0,2500	0,3619	3,0704	0,0698	0,0872	90,0	0,2500	0,3634	3,4960	0,0715	0,0894	90,0	0,2500	0,3633	3,4612	0,0613	0,0766	79,8			
	0,2000	0,3586	2,1154	0,0687	0,0824	90,0	0,2000	0,3614	2,9187	0,0721	0,0865	90,0	0,2000	0,3629	3,3547	0,0739	0,0887	90,0	0,2000	0,3640	3,6505	0,0685	0,0822	83,6			
ĺ	0,1667	0,3582	1,9967	0,0702	0,0818	90,0	0,1667	0,3610	2,8119	0,0737	0,0859	90,0	0,1667	0,3626	3,2551	0,0756	0,0882	90,0	0,1667	0,3644	3,7900	0,0740	0,0864	86,4			
	0,1429	0,3578	1,9089	0,0712	0,0814	90,0	0,1429	0,3607	2,7327	0,0749	0,0855	90,0	0,1429	0,3623	3,1811	0,0768	0,0878	90,0	0,1429	0,3648	3,8934	0,0784	0,0896	88,5			

Tab. Z2.10 Zbiorcze wyniki obliczeń dla mieszankowych wymienników ciepła zasilanych z inżektora regeneracyjnego dla temperatur kondensatu 70, 80, 90 °C

			19,5 b	arA					10 b	arA				-	6,6 b	arA								
[б	η_{CRD}	ε _{crd}	\dot{m}_2	m ₉	t ₇	б	η_{CRD}	ε _{crd}	m ₂	m ₉	t ₇	б	η_{CRD}	ε _{CRD}	m ₂	m ₉	t ₇	б	η_{CRD}	ε _{CRD}	m ₂	m ₉	t ₇
[[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C
) °C	0,6667	0,3586	2,1140	0,0343	0,0571	69,7	0,6667	0,3600	2,5242	0,0355	0,0591	69,6	0,6667	0,3601	2,5418	0,0336	0,0560	67,1	0,6667					
	0,5000	0,3600	2,5203	0,0493	0,0739	81,5	0,5000	0,3610	2,8030	0,0464	0,0696	76,9	0,5000	0,3612	2,8541	0,0440	0,0659	73,7	0,5000					
	0,4292	0,3603	2,6050	0,0560	0,0800	86,1	0,4292	0,3615	2,9408	0,0527	0,0753	80,9	0,4292	0,3617	3,0103	0,0499	0,0713	77,4	0,4292	0,3614	2,9086	0,0428	0,0612	69,7
100	0,3759	0,3606	2,6833	0,0623	0,0857	90,3	0,3759	0,3619	3,0557	0,0583	0,0803	84,4	0,3759	0,3620	3,0899	0,0543	0,0747	79,8	0,3759	0,3619	3,0604	0,0474	0,0653	72,3
Ī	0,3333	0,3607	2,7279	0,0677	0,0902	93,8	0,3333	0,3622	3,1548	0,0635	0,0847	87,6	0,3333	0,3624	3,2093	0,0592	0,0790	82,7	0,3333	0,3623	3,1862	0,0516	0,0688	74,6
-	0,2500	0,3607	2,7237	0,0784	0,0980	100,0	0,2500	0,3630	3,3649	0,0760	0,0950	95,0	0,2500	0,3634	3,4985	0,0716	0,0894	90,0	0,2500	0,3633	3,4612	0,0613	0,0766	79 <i>,</i> 8
	0,2000	0,3600	2,5222	0,0808	0,0970	100,0	0,2000	0,3634	3,4800	0,0848	0,1017	100,0	0,2000	0,3640	3,6619	0,0801	0,0962	94,8	0,2000	0,3640	3,6505	0,0685	0,0822	83,6
Ī	0,1667	0,3595	2,3807	0,0825	0,0963	100,0	0,1667	0,3629	3,3527	0,0866	0,1011	100,0	0,1667	0,3644	3,7655	0,0865	0,1009	98,2	0,1667	0,3644	3,7900	0,0740	0,0864	86,4
Ī	0,1429	0,3591	2,2760	0,0838	0,0957	100,0	0,1429	0,3626	3,2583	0,0880	0,1006	100,0	0,1429	0,3645	3,7929	0,0904	0,1033	100,0	0,1429	0,3648	3,8934	0,0784	0,0896	88,5
			19,5 b	arA					10 b	arA					6,6 b	arA	•			•	arA			
	б	η_{CRD}	ε _{crd}	\dot{m}_2	ṁ ₉	t ₇	б	η_{CRD}	ε _{crd}	m ₂	<i>m</i> ₉	t ₇	б	η_{CRD}	ε _{crd}	\dot{m}_2	<i>m</i> ₉	t ₇	б	η_{CRD}	ε _{crd}	m ₂	m ₉	t ₇
	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C
105 °C	0,6667	0,3586	2,1140	0,0343	0,0571	69,7	0,6667	0,3600	2,5242	0,0355	0,0591	69,6	0,6667	0,3601	2,5418	0,0336	0,0560	67,1	0,6667					
	0,5000	0,3600	2,5203	0,0493	0,0739	81,5	0,5000	0,3610	2,8030	0,0464	0,0696	76,9	0,5000	0,3612	2,8541	0,0440	0,0659	73,7	0,5000					
	0,4292	0,3603	2,6050	0,0560	0,0800	86,1	0,4292	0,3615	2,9408	0,0527	0,0753	80,9	0,4292	0,3617	3,0103	0,0499	0,0713	77,4	0,4292	0,3614	2,9086	0,0428	0,0612	69,7
	0,3759	0,3606	2,6833	0,0623	0,0857	90,3	0,3759	0,3619	3,0557	0,0583	0,0803	84,4	0,3759	0,3620	3,0899	0,0543	0,0747	79,8	0,3759	0,3619	3,0604	0,0474	0,0653	72,3
Ī	0,3333	0,3607	2,7279	0,0677	0,0902	93,8	0,3333	0,3622	3,1548	0,0635	0,0847	87,6	0,3333	0,3624	3,2093	0,0592	0,0790	82,7	0,3333	0,3623	3,1862	0,0516	0,0688	74,6
Ī	0,2500	0,3611	2,8333	0,0812	0,1016	102,4	0,2500	0,3630	3,3649	0,0760	0,0950	95,0	0,2500	0,3634	3,4985	0,0716	0,0894	90,0	0,2500	0,3633	3,4612	0,0613	0,0766	79,8
Ī	0,2000	0,3607	2,7314	0,0869	0,1043	105,0	0,2000	0,3634	3,5047	0,0853	0,1024	100,4	0,2000	0,3640	3,6619	0,0801	0,0962	94,8	0,2000	0,3640	3,6505	0,0685	0,0822	83,6
Ī	0,1667	0,3602	2,5782	0,0887	0,1035	105,0	0,1667	0,3638	3,5972	0,0924	0,1078	104,4	0,1667	0,3644	3,7655	0,0865	0,1009	98,2	0,1667	0,3644	3,7900	0,0740	0,0864	86,4
Ī	0,1429	0,3598	2,4648	0,0901	0,1030	105,0	0,1429	0,3635	3,5269	0,0946	0,1082	105,0	0,1429	0,3647	3,8719	0,0921	0,1052	101,3	0,1429	0,3648	3,8934	0,0784	0,0896	88,5
			19,5 b	oarA					10 b	arA			6,6 barA						3,0 barA					
[б	η _{crd}	ε _{crd}	\dot{m}_2	m ₉	t ₇	б	η _{CRD}	ε _{crd}	m ₂	m ₉	t ₇	б	η _{CRD}	ε _{crd}	m ₂	m ₉	t ₇	б	η _{crd}	ε _{crd}	m ₂	m ₉	t7
	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C
Ī	0,6667	0,3586	2,1140	0,0343	0,0571	69,7	0,6667	0,3600	2,5242	0,0355	0,0591	69,6	0,6667	0,3601	2,5418	0,0336	0,0560	67,1	0,6667					
Ī	0,5000	0,3600	2,5203	0,0493	0,0739	81,5	0,5000	0,3610	2,8030	0,0464	0,0696	76,9	0,5000	0,3612	2,8541	0,0440	0,0659	73,7	0,5000					
υ	0,4292	0,3603	2,6050	0,0560	0,0800	86,1	0,4292	0,3615	2,9408	0,0527	0,0753	80,9	0,4292	0,3617	3,0103	0,0499	0,0713	77,4	0,4292	0,3614	2,9086	0,0428	0,0612	69,7
110	0,3759	0,3606	2,6833	0,0623	0,0857	90,3	0,3759	0,3619	3,0557	0,0583	0,0803	84,4	0,3759	0,3620	3,0899	0,0543	0,0747	79,8	0,3759	0,3619	3,0604	0,0474	0,0653	72,3
Ī	0,3333	0,3607	2,7279	0,0677	0,0902	93,8	0,3333	0,3622	3,1548	0,0635	0,0847	87,6	0,3333	0,3624	3,2093	0,0592	0,0790	82,7	0,3333	0,3623	3,1862	0,0516	0,0688	74,6
Ī	0,2500	0,3611	2,8333	0,0812	0,1016	102,4	0,2500	0,3630	3,3649	0,0760	0,0950	95,0	0,2500	0,3634	3,4985	0,0716	0,0894	90,0	0,2500	0,3633	3,4612	0,0613	0,0766	79,8
Ī	0,2000	0,3613	2,8936	0,0916	0,1099	108,9	0,2000	0,3634	3,5047	0,0853	0,1024	100,4	0,2000	0,3640	3,6619	0,0801	0,0962	94,8	0,2000	0,3640	3,6505	0,0685	0,0822	83,6
Ī	0,1667	0,3609	2,7771	0,0949	0,1107	110,0	0,1667	0,3638	3,5972	0,0924	0,1078	104,4	0,1667	0,3644	3,7655	0,0865	0,1009	98,2	0,1667	0,3650	3,9550	0,0770	0,0899	88,5
Ī	0,1429	0,3605	2,6549	0,0964	0,1101	110,0	0,1429	0,3640	3,6725	0,0982	0,1122	107,7	0,1429	0,3647	3,8719	0,0921	0,1052	101,3	0,1429	0,3644	3,7691	0,0760	0,0869	86,9

Tab. Z2.11 Zbiorcze wyniki obliczeń dla mieszankowych wymienników ciepła zasilanych z inżektora regeneracyjnego dla temperatur kondensatu 100,105, 110 °C

Z2.4. Układ z zastosowaniem nadciśnieniowych powierzchniowych wymienników ciepła

Z2.4.1. Układy jednostopniowego sprężania pary

Schemat cieplno-przepływowy regeneracyjnego układu dla nadciśnieniowych wymienników ciepła zasilanych parą odlotową z regeneracyjnego inżektora parowego przedstawiono na rysunku 6.38.

Rys. Z2.26 Schemat cieplno-przepływowy układu z jednostopniowym podgrzewaniem wody zasilającej z wykorzystaniem nadciśnieniowego wymiennika ciepła zasilanego regeneracyjnym inżektorem parowym oraz pompą skroplin

Obliczenia, których zbiorcze wyniki przedstawiono w tabeli Z2.12, przeprowadzono zgodnie z algorytmem Z2.27-Z2.30:

- 1. Wyznaczenie parametrów pary dla poszczególnych płaszczyznach kontrolnych;
- 2. Obliczenia strumienia masy pary grzewczej dla regeneracyjnego wymiennika: ciepła:

$$\dot{m}_9 = \dot{m}_7 \frac{\dot{i}_8 - \dot{i}_6}{\dot{i}_9 - \dot{i}_6} \tag{Z2.27}$$

3. Obliczenia strumienia masy pary upustowej zasilającej inżektor parowy

$$\dot{m}_2 = \frac{\dot{m}_9}{(1+\sigma)} \tag{Z2.28}$$

4. Wyznaczenie wielkości entalpii zmieszanych skroplin z kondensatem
$$i_7 = \frac{\dot{m}_6 i_6 + \dot{m}_{11} i_{11}}{\dot{m}_6 + \dot{m}_{11}} \tag{Z2.29}$$

5. Wyznaczenie sprawności cieplnej obiegu regeneracyjnego

$$\eta_{CRN} = \frac{\dot{m}_1(i_1 - i_3) - \dot{m}_2(i_2 - i_3)}{\dot{m}_8(i_1 - i_8)}$$
(Z2.30)

6. Obliczenie stopnia regeneracji układu zgodnie ze wzorem 6.1.

			19,5 ba	arA					10 bar	A					6,6 barA	l l		
	б	η_{CRD}	ϵ_{CRD}	\dot{m}_2	ṁ ₉	t ₇	б	η_{CRD}	ϵ_{crd}	m₂₂	ṁ₀	t ₇	б	η_{CRD}	ϵ_{crd}	m ₂	ṁ₀	t ₇
ں ا	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C
. 8	0,25	0,3606	2,6970	0,0777	0,0971	97,447	0,25						0,25					
Ē.	0,2	0,3602	2,5731	0,0823	0,0988	100	0,2	0,3627	3,2919	0,0805	0,0967	95,434	0,2					
	0,167	0,3597	2,4292	0,0840	0,0981	100	0,167	0,3630	3,3886	0,0875	0,1021	99,421	0,167					
	0,143	0,3593	2,3223	0,0853	0,0975	100	0,143	0,3628	3,3246	0,0897	0,1025	100	0,143	0,3639	3,6392	0,0870	0,0994	96,27
			19,5 ba	arA					10 bar	A					6,6 bar/	۱		
	б	η_{CRD}	ε _{crd}	m ₂	m ₉	t ₇	б	η_{CRD}	ε _{crd}	m₂	ṁ₀	t ₇	б	η_{CRD}	ε _{crd}	m₂	ṁ₀	t ₇
U.	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C
10	0,25						0,25						0,25					
1	0,200	0,3606	2,6831	0,0855	0,1026	103,866	0,200						0,200					
	0,167	0,3609	2,7751	0,0949	0,1107	108,769	0,167						0,167					
	0,143	0,3606	2,7003	0,0979	0,1118	110	0,143	0,3635	3,5276	0,0947	0,1082	102,667	0,143					
			19,5 ba	arA					10 bar	A					6,6 barA	1		
	б	η_{CRD}	ε _{crd}	\dot{m}_2	m॑9	t ₇	б	η_{CRD}	ε _{crd}	m₂	ṁ₀	t7	б	η_{CRD}	ε _{crd}	m₂	ṁ₀	t7
υ	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	°C
50	0,25						0,25						0,25					
-	0,2						0,2						0,2					
÷ .	0,167						0,167						0,167					
	0,143	0,3610	2,8003	0,1011	0,1156	112,594	0,143						0,143					1

Tab. Z2.12 Zbiorcze wyniki obliczeń dla nadciśnieniowych wymienników ciepła zasilanych z inżektora regeneracyjnego dla temperatur kondensatu 100,110, 120 °C

Z2.4.2. Układy dwustopniowego sprężania pary

Zastosowanie dwustopniowego sprężania para w układzie jednostopniowego podgrzewania wody zasilającej

Na rysunku Z2.27 przedstawiono schemat cieplno-przepływowy obiegu parowego z zastosowaniem dwustopniowego sprężania pary w zespole inżektorowym zasilanego z jednego (Z2.27a) 6,6-6,6 barA oraz z dwóch różnych (Z2.27b) zaczepów pary 3,0-6,6; 3,0-10; 6,6-10 barA. Zespół inżektorowy dostarcza parę grzewczą do jednego podgrzewacza regeneracyjnego o parametrach stanu wyznaczonych w rozdziale piątym.

Rys. Z2.27 Schemat cieplno-przepływowy układu z jednostopniowym podgrzewaniem wody zasilającej z wykorzystaniem dwustopniowego zespołu inżektorowego zasilanego a) z jednego zaczepu pary, b) z osobnych zaczepów pary

Obliczenia przeprowadzono zgodnie z algorytmem Z2.31-Z2.37:

- 1. Wyznaczenie parametrów pary dla poszczególnych płaszczyznach kontrolnych;
- 2. Obliczenia strumienia masy pary grzewczej dla regeneracyjnego wymiennika ciepła:

$$\dot{m}_{10} = \frac{\dot{i}_9 - \dot{i}_7}{\dot{i}_{10} - \dot{i}_7} \tag{Z2.31}$$

3. Obliczenia strumienia masy pary upustowej zasilającej inżektor parowy drugiego stopnia \dot{m}_2 oraz pary zassanej \dot{m}_{x2}

$$\dot{m}_2 = \frac{\dot{m}_9}{(1+\sigma)} \tag{Z2.32}$$

$$\dot{m}_{x2} = \frac{\dot{m}_{10}}{(1 + \frac{1}{6_2})} \tag{Z2.33}$$

4. Obliczenia strumienia masy pary upustowej zasilającej inżektor parowy pierwszego stopnia \dot{m}_3 oraz pary zassanej

$$\dot{m}_3 = \frac{\dot{m}_{x2}}{(1+6_1)} \tag{Z2.34}$$

$$\dot{m}_{x1} = \frac{\dot{m}_{x2}}{(1+\frac{1}{6_2})} \tag{Z2.35}$$

5. Wyznaczenie wielkości entalpii oraz temperatury (odczytane z tabeli termodynamicznej) zmieszanych skroplin pary grzewczej z kondensatem ze skraplacza głównego

$$i_8 = \frac{\dot{m}_7 i_7 + \dot{m}_{12} i_{12}}{\dot{m}_7 + \dot{m}_{12}} \tag{Z2.36}$$

6. Wyznaczenie sprawności cieplnej obiegu regeneracyjnego

$$\eta_{CR2s} = \frac{\dot{m}_1(i_1 - i_3) - \dot{m}_2(i_2 - i_3)}{\dot{m}_8(i_1 - i_8)}$$
(Z2.37)

7. Obliczenie stopnia regeneracji układu zgodnie ze wzorem 6.1.

Zbiorcze wyniki obliczeń układów z dwustopniowymi zespołami inżektorowymi przedstawiono w tabelach Z2.13 – Z2.29.

													100 °C													
		1	s - 3,0 barA	, 2s 6,6 ba	rA б1=0,5						1s	- 3,0 barA,	2s 6,6 bar/	б1=0,429						1s –	3, barA, 2s	6,6 barA ba	arA б1=0,4	29		
б2	η_{CRN2s}	ε _{crn2s}	\dot{m}_2	m ₃	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η_{CRN2s}	ε _{CRN2s}	m ₂	m ₃	<i>m</i> ₁₀	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	m ₃	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3617	3,019	0,0472	0,0210	0,0786	0,0105	0,0314	81,9	0,667	0,3621	3,125	0,0492	0,0229	0,0820	0,0098	0,0328	84,2	0,667	0,3625	3,222	0,0510	0,0247	0,0850	0,0093	0,0340	86,3
0,500	0,3625	3,233	0,0575	0,0192	0,0863	0,0096	0,0288	87,3	0,500	0,3628	3,328	0,0596	0,0208	0,0894	0,0089	0,0298	89,4	0,500	0,3631	3,416	0,0614	0,0223	0,0922	0,0084	0,0307	91,3
0,429	0,3629	3,352	0,0634	0,0181	0,0906	0,0091	0,0272	90,3	0,429	0,3632	3,442	0,0654	0,0196	0,0935	0,0084	0,0281	92,3	0,429	0,3635	3,526	0,0673	0,0210	0,0962	0,0079	0,0289	94,1
0,376	0,3633	3,455	0,0685	0,0172	0,0943	0,0086	0,0258	92,9	0,376	0,3636	3,542	0,0706	0,0186	0,0971	0,0080	0,0265	94,8	0,376	0,3639	3,622	0,0725	0,0198	0,0997	0,0074	0,0272	96,6
0,333	0,3636	3,549	0,0733	0,0163	0,0977	0,0081	0,0244	95,2	0,333	0,3639	3,632	0,0753	0,0176	0,1004	0,0075	0,0251	97,1	0,333	0,3642	3,711	0,0772	0,0187	0,1029	0,0070	0,0257	98,8
0,250	0,3642	3,723	0,0836	0,0139	0,1045	0,0070	0,0209	100,0	0,250	0,3641	3,697	0,0835	0,0146	0,1043	0,0063	0,0209	100,0	0,250	0,3640	3,676	0,0834	0,0152	0,1042	0,0057	0,0208	100,0
0,200	0,3639	3,644	0,0867	0,0116	0,1041	0,0058	0,0173	100,0	0,200	0,3639	3,623	0,0866	0,0121	0,1040	0,0052	0,0173	100,0	0,200	0,3638	3,606	0,0866	0,0126	0,1039	0,0047	0,0173	100,0
0,167	0,3637	3,589	0,0890	0,0099	0,1038	0,0049	0,0148	100,0	0,167	0,3637	3,570	0,0889	0,0104	0,1037	0,0044	0,0148	100,0	0,167	0,3636	3,556	0,0888	0,0108	0,1036	0,0040	0,0148	100,0
0,143	0,3636	3,547	0,0906	0,0086	0,1036	0,0043	0,0129	100,0	0,143	0,3635	3,531	0,0906	0,0091	0,1035	0,0039	0,0129	100,0	0,143	0,3635	3,518	0,0905	0,0094	0,1034	0,0035	0,0129	100,0
	1	1s	- 3,0 barA,	2s 6,6 bar/	A б1=0,333	3				0	1s	- 3,0 barA,	2s 6,6 bar/	б1=0,250	-				1	1s	- 3,0 barA,	2s 6,6 bar/	б1=0,200			
б2	η _{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3627	3,305	0,0526	0,0263	0,0876	0,0088	0,0350	88,0	0,667	0,3634	3,497	0,0562	0,0300	0,0937	0,0000	0,0000	92,2	0,667	0,3641	3,697	0,0597	0,0332	0,0996	0,0066	0,0398	96,1
0,500	0,3634	3,492	0,0631	0,0237	0,0946	0,0079	0,0315	92,9	0,500	0,3640	3,668	0,0668	0,0267	0,1002	0,0067	0,0334	96,8	0,500	0,3645	3,797	0,0695	0,0290	0,1043	0,0058	0,0348	99,6
0,429	0,3638	3,598	0,0689	0,0222	0,0985	0,0074	0,0296	95,7	0,429	0,3644	3,765	0,0727	0,0250	0,1039	0,0062	0,0312	99,3	0,429	0,3644	3,766	0,0732	0,0262	0,1047	0,0052	0,0314	100,0
0,376	0,3641	3,691	0,0741	0,0209	0,1019	0,0070	0,0279	98,1	0,376	0,3643	3,755	0,0760	0,0229	0,1046	0,0057	0,0286	100,0	0,376	0,3642	3,720	0,0759	0,0238	0,1044	0,0048	0,0285	100,0
0,333	0,3643	3,760	0,0785	0,0196	0,1046	0,0065	0,0262	100,0	0,333	0,3642	3,712	0,0783	0,0209	0,1044	0,0052	0,0261	100,0	0,333	0,3641	3,680	0,0782	0,0217	0,1043	0,0043	0,0261	100,0
0,250	0,3640	3,658	0,0833	0,0156	0,1041	0,0052	0,0208	100,0	0,250	0,3639	3,620	0,0832	0,0166	0,1040	0,0042	0,0208	100,0	0,250	0,3638	3,594	0,0831	0,0173	0,1038	0,0035	0,0208	100,0
0,200	0,3637	3,591	0,0865	0,0130	0,1038	0,0043	0,0173	100,0	0,200	0,3636	3,559	0,0864	0,0138	0,1036	0,0035	0,0173	100,0	0,200	0,3636	3,538	0,0863	0,0144	0,1035	0,0029	0,0173	100,0
0,167	0,3636	3,543	0,0888	0,0111	0,1036	0,0037	0,0148	100,0	0,167	0,3635	3,516	0,0887	0,0118	0,1034	0,0030	0,0148	100,0	0,167	0,3634	3,498	0,0886	0,0123	0,1033	0,0025	0,0148	100,0
0,143	0,3635	3,507	0,0905	0,0097	0,1034	0,0032	0,0129	100,0	0,143	0,3634	3,484	0,0904	0,0103	0,1033	0,0026	0,0129	100,0	0,143	0,3633	3,468	0,0903	0,0107	0,1032	0,0021	0,0129	100,0
		1s	- 3,0 barA,	2s 6,6 bar/	А б1=0,167	/					1s	- 3,0 barA,	2s 6,6 barA	б1=0,143												
б2	η _{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	ṁ ₃	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9									
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]									
0,667	0,3643	3,738	0,0608	0,0347	0,1013	0,0058	0,0405	97,4	0,667	0,3645	3,818	0,0623	0,0363	0,1038	0,0052	0,0415	99,1									
0,500	0,3645	3,792	0,0699	0,0299	0,1048	0,0050	0,0349	100,0	0,500	0,3644	3,769	0,0698	0,0305	0,1047	0,0044	0,0349	100,0									
0,429	0,3643	3,738	0,0732	0,0269	0,1045	0,0045	0,0314	100,0	0,429	0,3642	3,718	0,0731	0,0274	0,1044	0,0039	0,0314	100,0									
0,376	0,3641	3,694	0,0758	0,0244	0,1043	0,0041	0,0285	100,0	0,376	0,3640	3,676	0,0758	0,0249	0,1042	0,0036	0,0285	100,0									
0,333	0,3640	3,657	0,0781	0,0223	0,1041	0,0037	0,0260	100,0	0,333	0,3639	3,640	0,0780	0,0228	0,1041	0,0033	0,0260	100,0									
0,250	0,3637	3,576	0,0830	0,0178	0,1037	0,0030	0,0207	100,0	0,250	0,3636	3,563	0,0829	0,0181	0,1037	0,0026	0,0207	100,0									
0,200	0,3635	3,523	0,0862	0,0148	0,1035	0,0025	0,0172	100,0	0,200	0,3635	3,512	0,0862	0,0151	0,1034	0,0022	0,0172	100,0									
0,167	0,3634	3,485	0,0885	0,0126	0,1033	0,0021	0,0148	100,0	0,167	0,3633	3,475	0,0885	0,0129	0,1032	0,0018	0,0147	100,0									
0,143	0,3633	3,457	0,0902	0,0111	0,1031	0,0018	0,0129	100,0	0,143	0,3632	3,448	0,0902	0,0113	0,1031	0,0016	0,0129	100,0									

Tab. Z2.13 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 3,0 barA, drugi stopień 6,6 barA w zależności od stopnia eżekcji 6₁ dla temperatur kondensatu 100 °C

													110 °C												· · · · · · · · · · · · · · · · · · ·	
		1	s - 3,0 barA	, 2s 6,6 ba	rA б1=0,5						1s	- 3,0 barA,	2s 6,6 bar/	б1=0,429						1s	- 3,0 barA,	2s 6,6 bar	б1=0,376			
б2	η_{CRN2s}	ε _{crn2s}	\dot{m}_2	m ₃	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η_{CRN2s}	E _{CRN2s}	\dot{m}_2	m ₃	<i>m</i> ₁₀	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	m₂	m ₃	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3617	3,019	0,0472	0,0210	0,0786	0,0105	0,0314	81,9	0,667	0,3621	3,125	0,0492	0,0229	0,0820	0,0098	0,0328	84,2	0,667	0,3625	3,222	0,0510	0,0247	0,0850	0,0093	0,0340	86,3
0,500	0,3625	3,233	0,0575	0,0192	0,0863	0,0096	0,0288	87,3	0,500	0,3628	3,328	0,0596	0,0208	0,0894	0,0089	0,0298	89,4	0,500	0,3631	3,416	0,0614	0,0223	0,0922	0,0084	0,0307	91,3
0,429	0,3629	3,352	0,0634	0,0181	0,0906	0,0091	0,0272	90,3	0,429	0,3632	3,442	0,0654	0,0196	0,0935	0,0084	0,0281	92,3	0,429	0,3635	3,526	0,0673	0,0210	0,0962	0,0079	0,0289	94,1
0,376	0,3633	3,455	0,0685	0,0172	0,0943	0,0086	0,0258	92,9	0,376	0,3636	3,542	0,0706	0,0186	0,0971	0,0080	0,0265	94,8	0,376	0,3639	3,622	0,0725	0,0198	0,0997	0,0074	0,0272	96,6
0,333	0,3636	3,549	0,0733	0,0163	0,0977	0,0081	0,0244	95,2	0,333	0,3639	3,632	0,0753	0,0176	0,1004	0,0075	0,0251	97,1	0,333	0,3642	3,711	0,0772	0,0187	0,1029	0,0070	0,0257	98,8
0,250	0,3644	3,765	0,0844	0,0141	0,1055	0,0070	0,0211	100,7	0,250	0,3646	3,843	0,0865	0,0151	0,1081	0,0065	0,0216	102,4	0,250	0,3649	3,916	0,0883	0,0160	0,1104	0,0060	0,0221	104,0
0,200	0,3649	3,918	0,0926	0,0124	0,1112	0,0062	0,0185	104,7	0,200	0,3652	3,995	0,0947	0,0133	0,1136	0,0057	0,0189	106,3	0,200	0,3654	4,064	0,0965	0,0140	0,1158	0,0053	0,0193	107,8
0,167	0,3653	4,037	0,0990	0,0110	0,1155	0,0055	0,0165	107,7	0,167	0,3656	4,109	0,1010	0,0118	0,1178	0,0051	0,0168	109,3	0,167	0,3657	4,135	0,1019	0,0123	0,1188	0,0046	0,0170	110,0
0,143	0,3656	4,125	0,1039	0,0099	0,1188	0,0049	0,0148	110,0	0,143	0,3656	4,107	0,1039	0,0104	0,1187	0,0045	0,0148	110,0	0,143	0,3655	4,092	0,1038	0,0108	0,1186	0,0041	0,0148	110,0
		1s - 3	,0 barA, 2s	6,6 barA b	arA б1=0,3	333					1s	- 3,0 barA,	2s 6,6 bar/	А б1=0,250						1s	- 3,0 barA,	2s 6,6 bar/	а б1=0,200			
б2	η _{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3627	3,305	0,0526	0,0263	0,0876	0,0088	0,0350	88,0	0,667	0,3634	3,497	0,0562	0,0300	0,0937	0,0075	0,0375	92,2	0,667	0,3641	3,697	0,0597	0,0332	0,0996	0,0066	0,0398	96,1
0,500	0,3634	3,492	0,0631	0,0237	0,0946	0,0079	0,0315	92,9	0,500	0,3640	3,668	0,0668	0,0267	0,1002	0,0067	0,0334	96,8	0,500	0,3645	3,797	0,0695	0,0290	0,1043	0,0058	0,0348	99,6
0,429	0,3638	3,598	0,0689	0,0222	0,0985	0,0074	0,0296	95,7	0,429	0,3644	3,765	0,0727	0,0250	0,1039	0,0062	0,0312	99,3	0,429	0,3648	3,889	0,0754	0,0270	0,1078	0,0054	0,0324	102,0
0,376	0,3641	3,691	0,0741	0,0209	0,1019	0,0070	0,0279	98,1	0,376	0,3647	3,852	0,0778	0,0234	0,1071	0,0059	0,0293	101,6	0,376	0,3651	3,970	0,0806	0,0252	0,1108	0,0050	0,0303	104,2
0,333	0,3644	3,778	0,0788	0,0197	0,1051	0,0066	0,0263	100,3	0,333	0,3649	3,932	0,0825	0,0220	0,1100	0,0055	0,0275	103,7	0,333	0,3653	4,045	0,0852	0,0237	0,1136	0,0047	0,0284	106,1
0,250	0,3651	3,978	0,0899	0,0169	0,1124	0,0056	0,0225	105,4	0,250	0,3656	4,121	0,0935	0,0187	0,1169	0,0047	0,0234	108,5	0,250	0,3658	4,180	0,0953	0,0198	0,1191	0,0040	0,0238	110,0
0,200	0,3656	4,123	0,0981	0,0147	0,1177	0,0049	0,0196	109,1	0,200	0,3657	4,139	0,0991	0,0158	0,1189	0,0040	0,0198	110,0	0,200	0,3656	4,115	0,0990	0,0165	0,1188	0,0033	0,0198	110,0
0,167	0,3656	4,120	0,1018	0,0127	0,1188	0,0042	0,0170	110,0	0,167	0,3655	4,089	0,1017	0,0136	0,1186	0,0034	0,0169	110,0	0,167	0,3654	4,068	0,1016	0,0141	0,1185	0,0028	0,0169	110,0
0,143	0,3655	4,079	0,1038	0,0111	0,1186	0,0037	0,0148	110,0	0,143	0,3654	4,051	0,1036	0,0118	0,1184	0,0030	0,0148	110,0	0,143	0,3653	4,033	0,1036	0,0123	0,1183	0,0025	0,0148	110,0
		1s	- 3,0 barA,	2s 10 barA	А б1=0,167						1s	- 3,0 barA,	2s 6,6 bar/	А б1=0,143												
б2	η _{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t ₉	Į								
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]									
0,667	0,3643	3,738	0,0608	0,0347	0,1013	0,0058	0,0405	97,4	0,667	0,3645	3,805	0,0621	0,0362	0,1035	0,0052	0,0414	98,9									
0,500	0,3648	3,893	0,0716	0,0307	0,1074	0,0051	0,0358	101,7	0,500	0,3651	3,969	0,0732	0,0320	0,1097	0,0046	0,0366	103,3									
0,429	0,3651	3,982	0,0775	0,0285	0,1107	0,0048	0,0333	104,0	0,429	0,3654	4,053	0,0791	0,0297	0,1130	0,0042	0,0339	105,6									
0,376	0,3654	4,060	0,0826	0,0266	0,1137	0,0044	0,0311	106,1	0,376	0,3656	4,130	0,0842	0,0277	0,1159	0,0040	0,0317	107,6									
0,333	0,3657	4,133	0,0873	0,0249	0,1164	0,0042	0,0291	108,0	0,333	0,3659	4,200	0,0889	0,0259	0,1185	0,0037	0,0296	109,5	Į								
0,250	0,3657	4,159	0,0952	0,0204	0,1190	0,0034	0,0238	110,0	0,250	0,3657	4,143	0,0951	0,0208	0,1189	0,0030	0,0238	110,0	Į								
0,200	0,3655	4,097	0,0989	0,0170	0,1187	0,0028	0,0198	110,0	0,200	0,3655	4,084	0,0988	0,0173	0,1186	0,0025	0,0198	110,0	Į								
0,167	0,3654	4,053	0,1015	0,0145	0,1184	0,0024	0,0169	110,0	0,167	0,3653	4,042	0,1015	0,0148	0,1184	0,0021	0,0169	110,0									
0,143	0,3653	4,020	0,1035	0,0127	0,1183	0,0021	0,0148	110,0	0,143	0,3652	4,010	0,1035	0,0129	0,1182	0,0018	0,0148	110,0	l								

Tab. Z2.14 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 3,0 barA, drugi stopień 6,6 barA w zależności od stopnia eżekcji 6₁ dla temperatur kondensatu 110 °C

													120 °C													
		1	s - 3,0 barA	A, 2s 6,6 ba	rA б1=0,5						1s	- 3,0 barA,	2s 6,6 bar	А б1=0,429						1s	- 3,0 barA,	2s 6,6 bar/	А б1=0,376			
б2	η _{CRN2s}	ε _{CRN2s}	m₂₂	ḿ3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₉	б2	η _{CRN2s}	ε _{CRN2s}	m ₂	m ₃	<i>m</i> ₁₀	<i>m</i> _{x1}	<i>m</i> _{x2}	t ₉	б2	η _{CRN2s}	ε _{CRN2s}	m ₂	\dot{m}_3	<i>m</i> ₁₀	\dot{m}_{x1}	<i>m</i> _{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3617	3,019	0,0472	0,0210	0,0786	0,0105	0,0314	81,9	0,667	0,3621	3,125	0,0492	0,0229	0,0820	0,0098	0,0328	84,2	0,667	0,3625	3,222	0,0510	0,0247	0,0850	0,0093	0,0340	86,3
0,500	0,3625	3,233	0,0575	0,0192	0,0863	0,0096	0,0288	87,3	0,500	0,3628	3,328	0,0596	0,0208	0,0894	0,0089	0,0298	89,4	0,500	0,3631	3,416	0,0614	0,0223	0,0922	0,0084	0,0307	91,3
0,429	0,3629	3,352	0,0634	0,0181	0,0906	0,0091	0,0272	90,3	0,429	0,3632	3,442	0,0654	0,0196	0,0935	0,0084	0,0281	92,3	0,429	0,3635	3,526	0,0673	0,0210	0,0962	0,0079	0,0289	94,1
0,376	0,3633	3,455	0,0685	0,0172	0,0943	0,0086	0,0258	92,9	0,376	0,3636	3,542	0,0706	0,0186	0,0971	0,0080	0,0265	94,8	0,376	0,3639	3,622	0,0725	0,0198	0,0997	0,0074	0,0272	96,6
0,333	0,3636	3,549	0,0733	0,0163	0,0977	0,0081	0,0244	95,2	0,333	0,3639	3,632	0,0753	0,0176	0,1004	0,0075	0,0251	97,1	0,333	0,3642	3,711	0,0772	0,0187	0,1029	0,0070	0,0257	98,8
0,250	0,3644	3,765	0,0844	0,0141	0,1055	0,0070	0,0211	100,7	0,250	0,3646	3,843	0,0865	0,0151	0,1081	0,0065	0,0216	102,4	0,250	0,3649	3,916	0,0883	0,0160	0,1104	0,0060	0,0221	104,0
0,200	0,3649	3,918	0,0926	0,0124	0,1112	0,0062	0,0185	104,7	0,200	0,3652	3,995	0,0947	0,0133	0,1136	0,0057	0,0189	106,3	0,200	0,3654	4,064	0,0965	0,0140	0,1158	0,0053	0,0193	107,8
0,167	0,3653	4,037	0,0990	0,0110	0,1155	0,0055	0,0165	107,7	0,167	0,3656	4,109	0,1010	0,0118	0,1178	0,0051	0,0168	109,3	0,167	0,3658	4,175	0,1028	0,0124	0,1199	0,0047	0,0171	110,7
0,143	0,3656	4,129	0,1040	0,0099	0,1189	0,0050	0,0149	110,1	0,143	0,3659	4,200	0,1060	0,0106	0,1211	0,0045	0,0151	111,6	0,143	0,3661	4,263	0,1077	0,0112	0,1231	0,0042	0,0154	112,9
		1s - 3	,0 barA, 2s	6,6 barA b	arA б1=0,	333					1s	- 3,0 barA,	2s 6,6 bar	А б1=0,250						1s	- 3,0 barA,	2s 6,6 bar/	А б1=0,200)		
б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	<i>m</i> 3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3627	3,305	0,0526	0,0263	0,0876	0,0088	0,0350	88,0	0,667	0,3634	3,497	0,0562	0,0300	0,0937	0,0075	0,0375	92,2	0,667	0,3641	3,697	0,0597	0,0332	0,0996	0,0066	0,0398	96,1
0,500	0,3634	3,492	0,0631	0,0237	0,0946	0,0079	0,0315	92,9	0,500	0,3640	3,668	0,0668	0,0267	0,1002	0,0067	0,0334	96,8	0,500	0,3645	3,797	0,0695	0,0290	0,1043	0,0058	0,0348	99,6
0,429	0,3638	3,598	0,0689	0,0222	0,0985	0,0074	0,0296	95,7	0,429	0,3644	3,765	0,0727	0,0250	0,1039	0,0062	0,0312	99,3	0,429	0,3648	3,889	0,0754	0,0270	0,1078	0,0054	0,0324	102,0
0,376	0,3641	3,691	0,0741	0,0209	0,1019	0,0070	0,0279	98,1	0,376	0,3647	3,852	0,0778	0,0234	0,1071	0,0059	0,0293	101,6	0,376	0,3651	3,970	0,0806	0,0252	0,1108	0,0050	0,0303	104,2
0,333	0,3644	3,778	0,0788	0,0197	0,1051	0,0066	0,0263	100,3	0,333	0,3649	3,932	0,0825	0,0220	0,1100	0,0055	0,0275	103,7	0,333	0,3653	4,045	0,0852	0,0237	0,1136	0,0047	0,0284	106,1
0,250	0,3651	3,978	0,0899	0,0169	0,1124	0,0056	0,0225	105,4	0,250	0,3656	4,121	0,0935	0,0187	0,1169	0,0047	0,0234	108,5	0,250	0,3660	4,225	0,0962	0,0200	0,1202	0,0040	0,0240	110,8
0,200	0,3656	4,123	0,0981	0,0147	0,1177	0,0049	0,0196	109,1	0,200	0,3661	4,259	0,1016	0,0163	0,1220	0,0041	0,0203	112,0	0,200	0,3664	4,357	0,1042	0,0174	0,1250	0,0035	0,0208	114,1
0,167	0,3660	4,233	0,1043	0,0130	0,1217	0,0043	0,0174	111,9	0,167	0,3665	4,363	0,1078	0,0144	0,1258	0,0036	0,0180	114,7	0,167	0,3668	4,459	0,1103	0,0153	0,1287	0,0031	0,0184	116,7
0,143	0,3663	4,318	0,1092	0,0117	0,1248	0,0039	0,0156	114,1	0,143	0,3667	4,445	0,1126	0,0129	0,1287	0,0032	0,0161	116,8	0,143	0,3671	4,537	0,1151	0,0137	0,1315	0,0027	0,0164	118,7
		19	- 3,0 barA,	2s 10 barA	А б1=0,167						1s	- 3,0 barA,	2s 6,6 bar	А б1=0,143				Į								
б2	η _{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	<i>m</i> 3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	ļ								
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]									
0,667	0,3643	3,738	0,0608	0,0347	0,1013	0,0058	0,0405	97,4	0,667	0,3645	3,805	0,0621	0,0362	0,1035	0,0052	0,0414	98,9									
0,500	0,3648	3,893	0,0716	0,0307	0,1074	0,0051	0,0358	101,7	0,500	0,3651	3,969	0,0732	0,0320	0,1097	0,0046	0,0366	103,3									
0,429	0,3651	3,982	0,0775	0,0285	0,1107	0,0048	0,0333	104,0	0,429	0,3654	4,053	0,0791	0,0297	0,1130	0,0042	0,0339	105,6									
0,376	0,3654	4,060	0,0826	0,0266	0,1137	0,0044	0,0311	106,1	0,376	0,3656	4,130	0,0842	0,0277	0,1159	0,0040	0,0317	107,6									
0,333	0,3657	4,133	0,0873	0,0249	0,1164	0,0042	0,0291	108,0	0,333	0,3659	4,200	0,0889	0,0259	0,1185	0,0037	0,0296	109,5									
0,250	0,3663	4,304	0,0982	0,0210	0,1227	0,0035	0,0245	112,4	0,250	0,3665	4,366	0,0997	0,0218	0,1246	0,0031	0,0249	113,8									
0,200	0,3667	4,433	0,1061	0,0182	0,1274	0,0030	0,0212	115,7	0,200	0,3669	4,490	0,1076	0,0188	0,1291	0,0027	0,0215	116,9	Į								
0,167	0,3670	4,530	0,1122	0,0160	0,1309	0,0027	0,0187	118,2	0,167	0,3672	4,586	0,1136	0,0166	0,1326	0,0024	0,0189	119,3									
0,143	0,3673	4,601	0,1168	0,0143	0,1335	0,0024	0,0167	120,0	0,143	0,3673	4,590	0,1167	0,0146	0,1334	0,0021	0,0167	120,0									

Tab. Z2.15 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 3,0 barA, drugi stopień 6,6 barA w zależności od stopnia eżekcji 6₁ dla temperatur kondensatu 120 °C

													130 °C					-								
		1	s - 3,0 barA	, 2s 6,6 bai	rA б1=0,5						1s	- 3,0 barA,	2s 6,6 bar/	б1=0,429						1s	- 3,0 barA,	2s 6,6 barA	б1=0,376			
б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t9	б2	η _{CRN2s}	E _{CRN2s}	m ₂	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3617	3,019	0,0472	0,0210	0,0786	0,0105	0,0314	81,9	0,667	0,3621	3,125	0,0492	0,0229	0,0820	0,0098	0,0328	84,2	0,667	0,3625	3,222	0,0510	0,0247	0,0850	0,0093	0,0340	86,3
0,500	0,3625	3,233	0,0575	0,0192	0,0863	0,0096	0,0288	87,3	0,500	0,3628	3,328	0,0596	0,0208	0,0894	0,0089	0,0298	89,4	0,500	0,3631	3,416	0,0614	0,0223	0,0922	0,0084	0,0307	91,3
0,429	0,3629	3,352	0,0634	0,0181	0,0906	0,0091	0,0272	90,3	0,429	0,3632	3,442	0,0654	0,0196	0,0935	0,0084	0,0281	92,3	0,429	0,3635	3,526	0,0673	0,0210	0,0962	0,0079	0,0289	94,1
0,376	0,3633	3,455	0,0685	0,0172	0,0943	0,0086	0,0258	92,9	0,376	0,3636	3,542	0,0706	0,0186	0,0971	0,0080	0,0265	94,8	0,376	0,3639	3,622	0,0725	0,0198	0,0997	0,0074	0,0272	96,6
0,333	0,3636	3,549	0,0733	0,0163	0,0977	0,0081	0,0244	95,2	0,333	0,3639	3,632	0,0753	0,0176	0,1004	0,0075	0,0251	97,1	0,333	0,3642	3,711	0,0772	0,0187	0,1029	0,0070	0,0257	98,8
0,250	0,3644	3,765	0,0844	0,0141	0,1055	0,0070	0,0211	100,7	0,250	0,3646	3,843	0,0865	0,0151	0,1081	0,0065	0,0216	102,4	0,250	0,3649	3,916	0,0883	0,0160	0,1104	0,0060	0,0221	104,0
0,200	0,3649	3,918	0,0926	0,0124	0,1112	0,0062	0,0185	104,7	0,200	0,3652	3,995	0,0947	0,0133	0,1136	0,0057	0,0189	106,3	0,200	0,3654	4,064	0,0965	0,0140	0,1158	0,0053	0,0193	107,8
0,167	0,3653	4,037	0,0990	0,0110	0,1155	0,0055	0,0165	107,7	0,167	0,3656	4,109	0,1010	0,0118	0,1178	0,0051	0,0168	109,3	0,167	0,3658	4,175	0,1028	0,0124	0,1199	0,0047	0,0171	110,7
0,143	0,3656	4,129	0,1040	0,0099	0,1189	0,0050	0,0149	110,1	0,143	0,3659	4,200	0,1060	0,0106	0,1211	0,0045	0,0151	111,6	0,143	0,3661	4,263	0,1077	0,0112	0,1231	0,0042	0,0154	112,9
		1s - 3	,0 barA, 2s	6,6 barA b	arA б1=0,3	33	-				1s	- 3,0 barA,	2s 6,6 bar/	б1=0,250	-				1	1s	- 3,0 barA,	2s 6,6 barA	б1=0,200	-		
б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t9	б2	η_{CRN2s}	E _{CRN2s}	<i>m</i> ₂	m ₃	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t9
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3627	3,305	0,0526	0,0263	0,0876	0,0088	0,0350	88,0	0,667	0,3634	3,497	0,0562	0,0300	0,0937	0,0075	0,0375	92,2	0,667	0,3641	3,697	0,0597	0,0332	0,0996	0,0066	0,0398	96,1
0,500	0,3634	3,492	0,0631	0,0237	0,0946	0,0079	0,0315	92,9	0,500	0,3640	3,668	0,0668	0,0267	0,1002	0,0067	0,0334	96,8	0,500	0,3645	3,797	0,0695	0,0290	0,1043	0,0058	0,0348	99,6
0,429	0,3638	3,598	0,0689	0,0222	0,0985	0,0074	0,0296	95,7	0,429	0,3644	3,765	0,0727	0,0250	0,1039	0,0062	0,0312	99,3	0,429	0,3648	3,889	0,0754	0,0270	0,1078	0,0054	0,0324	102,0
0,376	0,3641	3,691	0,0741	0,0209	0,1019	0,0070	0,0279	98,1	0,376	0,3647	3,852	0,0778	0,0234	0,1071	0,0059	0,0293	101,6	0,376	0,3651	3,970	0,0806	0,0252	0,1108	0,0050	0,0303	104,2
0,333	0,3644	3,778	0,0788	0,0197	0,1051	0,0066	0,0263	100,3	0,333	0,3649	3,932	0,0825	0,0220	0,1100	0,0055	0,0275	103,7	0,333	0,3653	4,045	0,0852	0,0237	0,1136	0,0047	0,0284	106,1
0,250	0,3651	3,978	0,0899	0,0169	0,1124	0,0056	0,0225	105,4	0,250	0,3656	4,121	0,0935	0,0187	0,1169	0,0047	0,0234	108,5	0,250	0,3660	4,225	0,0962	0,0200	0,1202	0,0040	0,0240	110,8
0,200	0,3656	4,123	0,0981	0,0147	0,1177	0,0049	0,0196	109,1	0,200	0,3661	4,259	0,1016	0,0163	0,1220	0,0041	0,0203	112,0	0,200	0,3664	4,357	0,1042	0,0174	0,1250	0,0035	0,0208	114,1
0,167	0,3660	4,233	0,1043	0,0130	0,1217	0,0043	0,0174	111,9	0,167	0,3665	4,363	0,1078	0,0144	0,1258	0,0036	0,0180	114,7	0,167	0,3668	4,459	0,1103	0,0153	0,1287	0,0031	0,0184	116,7
0,143	0,3663	4,318	0,1092	0,0117	0,1248	0,0039	0,0156	114,1	0,143	0,3667	4,445	0,1126	0,0129	0,1287	0,0032	0,0161	116,8	0,143	0,3671	4,537	0,1151	0,0137	0,1315	0,0027	0,0164	118,7
		1s	- 3,0 barA,	2s 10 barA	б1=0,167	1	1				1s	- 3,0 barA,	2s 6,6 bar/	А б1=0,143												
б2	η _{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	<i>m</i> _{x1}	\dot{m}_{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	<i>m</i> 2	m̂₃	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉	ļ								
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]									
0,667	0,3643	3,738	0,0608	0,0347	0,1013	0,0058	0,0405	97,4	0,667	0,3645	3,805	0,0621	0,0362	0,1035	0,0052	0,0414	98,9									
0,500	0,3648	3,893	0,0716	0,0307	0,1074	0,0051	0,0358	101,7	0,500	0,3651	3,969	0,0732	0,0320	0,1097	0,0046	0,0366	103,3	Į								
0,429	0,3651	3,982	0,0775	0,0285	0,1107	0,0048	0,0333	104,0	0,429	0,3654	4,053	0,0791	0,0297	0,1130	0,0042	0,0339	105,6									
0,376	0,3654	4,060	0,0826	0,0266	0,1137	0,0044	0,0311	106,1	0,376	0,3656	4,130	0,0842	0,0277	0,1159	0,0040	0,0317	107,6									
0,333	0,3657	4,133	0,0873	0,0249	0,1164	0,0042	0,0291	108,0	0,333	0,3659	4,200	0,0889	0,0259	0,1185	0,0037	0,0296	109,5	ļ								
0,250	0,3663	4,304	0,0982	0,0210	0,1227	0,0035	0,0245	112,4	0,250	0,3665	4,366	0,0997	0,0218	0,1246	0,0031	0,0249	113,8	ļ								
0,200	0,3667	4,433	0,1061	0,0182	0,1274	0,0030	0,0212	115,7	0,200	0,3669	4,490	0,1076	0,0188	0,1291	0,0027	0,0215	116,9	Į								
0,167	0,3670	4,530	0,1122	0,0160	0,1309	0,0027	0,0187	118,2	0,167	0,3672	4,586	0,1136	0,0166	0,1326	0,0024	0,0189	119,3	l								
0,143	0,3673	4,606	0,1169	0,0143	0,1336	0,0024	0,0167	120,1	0,143	0,3675	4,661	0,1184	0,0148	0,1353	0,0021	0,0169	121,2	l								

Tab. Z2.16 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 3,0 barA, drugi stopień 6,6 barA w zależności od stopnia eżekcji 6₁ dla temperatur kondensatu 130 °C

													100 °C					-								
		1	s - 3,0 barA	, 2s 10 bar	А б1=0,5						19	- 3,0 barA,	2s 10 barA	б1=0,429						1s - 6	5,6 barA, 2s	10 barA ba	arA б1=0,3	76		
б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t9	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	<i>ṁ</i> ₃	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	<i>i</i> n ₃	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3612	2,875	0,0484	0,0215	0,0807	0,0108	0,0323	84,2	0,667	0,3616	2,969	0,0504	0,0235	0,0841	0,0101	0,0336	86,5	0,667	0,3619	3,057	0,0523	0,0253	0,0871	0,0095	0,0348	88,7
0,500	0,3619	3,058	0,0594	0,0198	0,0891	0,0099	0,0297	90,2	0,500	0,3622	3,143	0,0614	0,0215	0,0922	0,0092	0,0307	92,4	0,500	0,3625	3,225	0,0634	0,0230	0,0950	0,0087	0,0317	94,4
0,429	0,3622	3,161	0,0656	0,0188	0,0937	0,0094	0,0281	93,6	0,429	0,3625	3,241	0,0677	0,0203	0,0967	0,0087	0,0290	95,7	0,429	0,3628	3,317	0,0696	0,0217	0,0994	0,0082	0,0299	97,6
0,376	0,3626	3,252	0,0711	0,0178	0,0979	0,0089	0,0267	96,6	0,376	0,3628	3,328	0,0732	0,0193	0,1007	0,0083	0,0275	98,6	0,376	0,3630	3,379	0,0747	0,0204	0,1028	0,0077	0,0281	100,0
0,333	0,3628	3,334	0,0762	0,0169	0,1016	0,0085	0,0254	99,3	0,333	0,3629	3,343	0,0769	0,0179	0,1026	0,0077	0,0256	100,0	0,333	0,3628	3,317	0,0768	0,0186	0,1025	0,0070	0,0256	100,0
0,250	0,3626	3,253	0,0822	0,0137	0,1027	0,0068	0,0205	100,0	0,250	0,3624	3,205	0,0815	0,0143	0,1019	0,0061	0,0204	100,0	0,250	0,3623	3,185	0,0814	0,0148	0,1018	0,0056	0,0204	100,0
0,200	0,3622	3,158	0,0852	0,0114	0,1022	0,0057	0,0170	100,0	0,200	0,3621	3,115	0,0845	0,0118	0,1014	0,0051	0,0169	100,0	0,200	0,3620	3,098	0,0845	0,0123	0,1014	0,0046	0,0169	100,0
0,167	0,3620	3,090	0,0873	0,0097	0,1019	0,0049	0,0146	100,0	0,167	0,3619	3,051	0,0867	0,0101	0,1011	0,0043	0,0144	100,0	0,167	0,3618	3,037	0,0866	0,0105	0,1011	0,0039	0,0144	100,0
0,143	0,3618	3,039	0,0889	0,0085	0,1016	0,0042	0,0127	100,0	0,143	0,3617	3,003	0,0883	0,0088	0,1009	0,0038	0,0126	100,0	0,143	0,3616	2,991	0,0882	0,0092	0,1008	0,0034	0,0126	100,0
		1s	- 3,0 barA,	2s 10 barA	б1=0,333						19	- 3,0 barA,	2s 10 barA	б1=0,250						1s	- 3,0 barA,	2s 10 barA	б1=0,200			
б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t9	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	<i>ṁ</i> ₃	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η_{CRN2s}	E _{CRN2s}	\dot{m}_2	m ₃	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t9
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3621	3,132	0,0539	0,0269	0,0898	0,0090	0,0359	90,5	0,667	0,3628	3,307	0,0575	0,0307	0,0959	0,0077	0,0384	94,7	0,667	0,3632	3,429	0,0601	0,0334	0,1002	0,0067	0,0401	97,7
0,500	0,3627	3,292	0,0650	0,0244	0,0975	0,0081	0,0325	96,1	0,500	0,3632	3,449	0,0687	0,0275	0,1031	0,0069	0,0344	100,0	0,500	0,3631	3,407	0,0686	0,0286	0,1029	0,0057	0,0343	100,0
0,429	0,3630	3,382	0,0712	0,0229	0,1018	0,0076	0,0306	99,2	0,429	0,3630	3,369	0,0719	0,0247	0,1027	0,0062	0,0308	100,0	0,429	0,3628	3,332	0,0717	0,0257	0,1025	0,0051	0,0308	100,0
0,376	0,3629	3,356	0,0746	0,0210	0,1026	0,0070	0,0280	100,0	0,376	0,3627	3,305	0,0744	0,0224	0,1024	0,0056	0,0280	100,0	0,376	0,3626	3,271	0,0743	0,0233	0,1022	0,0047	0,0279	100,0
0,333	0,3627	3,296	0,0768	0,0192	0,1023	0,0064	0,0256	100,0	0,333	0,3626	3,249	0,0766	0,0204	0,1021	0,0051	0,0255	100,0	0,333	0,3624	3,219	0,0765	0,0212	0,1020	0,0042	0,0255	100,0
0,250	0,3623	3,168	0,0814	0,0153	0,1017	0,0051	0,0203	100,0	0,250	0,3621	3,132	0,0812	0,0162	0,1015	0,0041	0,0203	100,0	0,250	0,3621	3,107	0,0811	0,0169	0,1014	0,0034	0,0203	100,0
0,200	0,3620	3,084	0,0844	0,0127	0,1013	0,0042	0,0169	100,0	0,200	0,3619	3,054	0,0843	0,0135	0,1011	0,0034	0,0169	100,0	0,200	0,3618	3,034	0,0842	0,0140	0,1010	0,0028	0,0168	100,0
0,167	0,3618	3,025	0,0866	0,0108	0,1010	0,0036	0,0144	100,0	0,167	0,3617	2,999	0,0865	0,0115	0,1009	0,0029	0,0144	100,0	0,167	0,3616	2,982	0,0864	0,0120	0,1008	0,0024	0,0144	100,0
0,143	0,3616	2,980	0,0882	0,0094	0,1008	0,0031	0,0126	100,0	0,143	0,3615	2,958	0,0881	0,0101	0,1007	0,0025	0,0126	100,0	0,143	0,3615	2,943	0,0880	0,0105	0,1006	0,0021	0,0126	100,0
		1s	- 3,0 barA,	2s 10 barA	б1=0,167		-			-	15	- 3,0 barA,	2s 10 barA	б1=0,143												
б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₉									
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]									
0,667	0,3635	3,524	0,0621	0,0355	0,1035	0,0059	0,0414	100,0	0,667	0,3634	3,497	0,0620	0,0362	0,1034	0,0052	0,0413	100,0	Į								
0,500	0,3630	3,377	0,0685	0,0294	0,1028	0,0049	0,0343	100,0	0,500	0,3629	3,355	0,0684	0,0299	0,1026	0,0043	0,0342	100,0	Į								
0,429	0,3627	3,305	0,0716	0,0264	0,1024	0,0044	0,0308	100,0	0,429	0,3627	3,285	0,0716	0,0269	0,1023	0,0038	0,0307	100,0	Į								
0,376	0,3625	3,247	0,0742	0,0239	0,1021	0,0040	0,0279	100,0	0,376	0,3625	3,229	0,0741	0,0244	0,1020	0,0035	0,0279	100,0	Į								
0,333	0,3624	3,197	0,0764	0,0218	0,1019	0,0036	0,0255	100,0	0,333	0,3623	3,180	0,0763	0,0223	0,1018	0,0032	0,0254	100,0	ļ								
0,250	0,3620	3,090	0,0811	0,0174	0,1013	0,0029	0,0203	100,0	0,250	0,3619	3,077	0,0810	0,0177	0,1013	0,0025	0,0203	100,0	ļ								
0,200	0,3617	3,019	0,0841	0,0144	0,1010	0,0024	0,0168	100,0	0,200	0,3617	3,009	0,0841	0,0147	0,1009	0,0021	0,0168	100,0	ļ								
0,167	0,3616	2,969	0,0863	0,0123	0,1007	0,0021	0,0144	100,0	0,167	0,3615	2,960	0,0863	0,0126	0,1007	0,0018	0,0144	100,0									
0,143	0,3614	2,932	0,0880	0,0108	0,1005	0,0018	0,0126	100,0	0,143	0,3614	2,924	0,0879	0,0110	0,1005	0,0016	0,0126	100,0									

Tab. Z2.17 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 3,0 barA, drugi stopień 10 barA w zależności od stopnia eżekcji G₁ dla temperatur kondensatu 100 °C

													110 °C													
		1	ls - 3,0 barA	A, 2s 10 bar	rА б1=0,5						19	s - 3,0 barA,	2s 10 barA	б1=0,429						1s	- 3,0 barA,	2s 10 barA	б1=0,376			
б2	η _{CRN2s}	ε _{crn2s}	\dot{m}_2	m̂3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t ₉	б2	η _{CRN2s}	ε _{CRN2s}	m ₂	m ₃	<i>m</i> ₁₀	\dot{m}_{x1}	<i>m</i> _{x2}	t ₉	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	<i>m</i> ₁₀	<i>m</i> _{x1}	\dot{m}_{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3612	2,875	0,0484	0,0215	0,0807	0,0108	0,0323	84,2	0,667	0,3616	2,969	0,0504	0,0235	0,0841	0,0101	0,0336	86,5	0,667	0,3619	3,057	0,0523	0,0253	0,0871	0,0095	0,0348	88,7
0,500	0,3619	3,058	0,0594	0,0198	0,0891	0,0099	0,0297	90,2	0,500	0,3622	3,143	0,0614	0,0215	0,0922	0,0092	0,0307	92,4	0,500	0,3625	3,225	0,0634	0,0230	0,0950	0,0087	0,0317	94,4
0,429	0,3622	3,161	0,0656	0,0188	0,0937	0,0094	0,0281	93,6	0,429	0,3625	3,241	0,0677	0,0203	0,0967	0,0087	0,0290	95,7	0,429	0,3628	3,317	0,0696	0,0217	0,0994	0,0082	0,0299	97,6
0,376	0,3626	3,252	0,0711	0,0178	0,0979	0,0089	0,0267	96,6	0,376	0,3628	3,328	0,0732	0,0193	0,1007	0,0083	0,0275	98,6	0,376	0,3631	3,400	0,0751	0,0205	0,1033	0,0077	0,0282	100,4
0,333	0,3628	3,334	0,0762	0,0169	0,1016	0,0085	0,0254	99,3	0,333	0,3631	3,407	0,0783	0,0183	0,1044	0,0078	0,0261	101,2	0,333	0,3633	3,475	0,0802	0,0194	0,1069	0,0073	0,0267	103,0
0,250	0,3635	3,525	0,0884	0,0147	0,1105	0,0074	0,0221	105,6	0,250	0,3638	3,592	0,0904	0,0158	0,1130	0,0068	0,0226	107,4	0,250	0,3640	3,655	0,0923	0,0168	0,1154	0,0063	0,0231	109,1
0,200	0,3639	3,646	0,0971	0,0129	0,1165	0,0065	0,0194	110,0	0,200	0,3639	3,622	0,0970	0,0136	0,1163	0,0058	0,0194	110,0	0,200	0,3638	3,603	0,0969	0,0141	0,1163	0,0053	0,0194	110,0
0,167	0,3637	3,568	0,0995	0,0111	0,1161	0,0055	0,0166	110,0	0,167	0,3636	3,548	0,0994	0,0116	0,1160	0,0050	0,0166	110,0	0,167	0,3635	3,531	0,0993	0,0120	0,1159	0,0045	0,0166	110,0
0,143	0,3635	3,509	0,1013	0,0096	0,1158	0,0048	0,0145	110,0	0,143	0,3634	3,492	0,1012	0,0101	0,1157	0,0043	0,0145	110,0	0,143	0,3634	3,478	0,1012	0,0105	0,1156	0,0039	0,0145	110,0
		15	- 3,0 barA,	2s 10 barA	б1=0,333		r				15	- 3,0 barA,	2s 10 barA	б1=0,250					1	1s	- 3,0 barA,	2s 10 barA	б1=0,200		1	
б2	η _{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	<i>m</i> 3	<i>m</i> ₁₀	<i>m</i> _{x1}	<i>m</i> _{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3621	3,132	0,0539	0,0269	0,0898	0,0090	0,0359	90,5	0,667	0,3628	3,307	0,0575	0,0307	0,0959	0,0077	0,0384	94,7	0,667	0,3632	3,429	0,0601	0,0334	0,1002	0,0067	0,0401	97,7
0,500	0,3627	3,292	0,0650	0,0244	0,0975	0,0081	0,0325	96,1	0,500	0,3633	3,450	0,0688	0,0275	0,1031	0,0069	0,0344	100,0	0,500	0,3637	3,564	0,0715	0,0298	0,1072	0,0060	0,0357	102,9
0,429	0,3630	3,382	0,0712	0,0229	0,1018	0,0076	0,0306	99,2	0,429	0,3635	3,532	0,0750	0,0258	0,1072	0,0064	0,0322	103,0	0,429	0,3640	3,649	0,0779	0,0279	0,1114	0,0056	0,0335	105,9
0,376	0,3633	3,461	0,0767	0,0216	0,1056	0,0072	0,0288	102,0	0,376	0,3638	3,605	0,0806	0,0242	0,1108	0,0061	0,0303	105,6	0,376	0,3642	3,711	0,0833	0,0261	0,1147	0,0052	0,0313	108,3
0,333	0,3636	3,534	0,0818	0,0205	0,1091	0,0068	0,0273	104,5	0,333	0,3640	3,673	0,0856	0,0228	0,1142	0,0057	0,0285	108,0	0,333	0,3643	3,743	0,0877	0,0244	0,1169	0,0049	0,0292	110,0
0,250	0,3641	3,685	0,0933	0,0175	0,1167	0,0058	0,0233	110,0	0,250	0,3639	3,642	0,0932	0,0186	0,1164	0,0047	0,0233	110,0	0,250	0,3638	3,614	0,0930	0,0194	0,1163	0,0039	0,0233	110,0
0,200	0,3637	3,587	0,0968	0,0145	0,1162	0,0048	0,0194	110,0	0,200	0,3636	3,552	0,0967	0,0155	0,1160	0,0039	0,0193	110,0	0,200	0,3635	3,528	0,0966	0,0161	0,1159	0,0032	0,0193	110,0
0,167	0,3635	3,517	0,0993	0,0124	0,1158	0,0041	0,0165	110,0	0,167	0,3634	3,487	0,0992	0,0132	0,1157	0,0033	0,0165	110,0	0,167	0,3633	3,467	0,0991	0,0138	0,1156	0,0028	0,0165	110,0
0,143	0,3633	3,466	0,1011	0,0108	0,1156	0,0036	0,0144	110,0	0,143	0,3632	3,439	0,1010	0,0115	0,1155	0,0029	0,0144	110,0	0,143	0,3632	3,422	0,1009	0,0120	0,1154	0,0024	0,0144	110,0
<u> </u>		19	- 3,0 barA,	2s 10 barA	а б1=0,167 I	-					19	s - 3,0 barA,	2s 10 barA	б1=0,143 I			1									
б ₂	η _{CRN2s}	ε _{CRN2s}	<i>m</i> ₂	<i>m</i> ₃	<i>m</i> ₁₀	\dot{m}_{x1}	\dot{m}_{x2}	t ₉	б ₂	η _{CRN2s}	E _{CRN2s}	<i>m</i> ₂	<i>m</i> 3	<i>m</i> ₁₀	\dot{m}_{x1}	\dot{m}_{x2}	t ₉									
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]									
0,667	0,3635	3,525	0,0621	0,0355	0,1035	0,0059	0,0414	100,0	0,667	0,3638	3,596	0,0636	0,0371	0,1060	0,0053	0,0424	101,8									
0,500	0,3640	3,654	0,0736	0,0315	0,1104	0,0053	0,0368	105,1	0,500	0,3642	3,719	0,0752	0,0329	0,1127	0,0047	0,0376	106,7									
0,429	0,3642	3,726	0,0799	0,0294	0,1142	0,0049	0,0343	107,8	0,429	0,3644	3,790	0,0815	0,0306	0,1165	0,0044	0,0350	109,4									
0,376	0,3644	3,776	0,0851	0,0274	0,1171	0,0046	0,0320	110,0	0,376	0,3643	3,755	0,0850	0,0280	0,1170	0,0040	0,0320	110,0									
0,333	0,3642	3,718	0,0876	0,0250	0,1168	0,0042	0,0292	110,0	0,333	0,3641	3,698	0,0875	0,0255	0,1167	0,0036	0,0292	110,0									
0,250	0,3638	3,593	0,0930	0,0199	0,1162	0,0033	0,0232	110,0	0,250	0,3637	3,578	0,0929	0,0203	0,1161	0,0029	0,0232	110,0									
0,200	0,3635	3,511	0,0965	0,0165	0,1158	0,0028	0,0193	110,0	0,200	0,3634	3,499	0,0965	0,0169	0,1157	0,0024	0,0193	110,0									
0,167	0,3633	3,453	0,0990	0,0141	0,1155	0,0024	0,0165	110,0	0,167	0,3632	3,442	0,0990	0,0144	0,1155	0,0021	0,0165	110,0									
0,143	0,3631	3,410	0,1009	0,0124	0,1153	0,0021	0,0144	110,0	0,143	0,3631	3,400	0,1009	0,0126	0,1153	0,0018	0,0144	110,0									

Tab. Z2.18 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 3,0 barA, drugi stopień 10 barA w zależności od stopnia eżekcji 61 dla temperatur kondensatu 110 °C

													120 °C													
		1	s - 3,0 bar/	A, 2s 10 bar	А б1=0,5						15	- 3,0 barA	2s 10 barA	б1=0,429						19	s - 3,0 barA,	, 2s 10 barA	б1=0,376			
б2	η _{CRN2s}	ε _{CRN2s}	m ₂	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	m ₂	m ₃	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	m ₂	m ₃	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t9
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3612	2,875	0,0484	0,0215	0,0807	0,0108	0,0323	84,2	0,667	0,3616	2,969	0,0504	0,0235	0,0841	0,0101	0,0336	86,5	0,667	0,3619	3,057	0,0523	0,0253	0,0871	0,0095	0,0348	88,7
0,500	0,3619	3,058	0,0594	0,0198	0,0891	0,0099	0,0297	90,2	0,500	0,3622	3,143	0,0614	0,0215	0,0922	0,0092	0,0307	92,4	0,500	0,3625	3,225	0,0634	0,0230	0,0950	0,0087	0,0317	94,4
0,429	0,3622	3,161	0,0656	0,0188	0,0937	0,0094	0,0281	93,6	0,429	0,3625	3,241	0,0677	0,0203	0,0967	0,0087	0,0290	95,7	0,429	0,3628	3,317	0,0696	0,0217	0,0994	0,0082	0,0299	97,6
0,376	0,3626	3,252	0,0711	0,0178	0,0979	0,0089	0,0267	96,6	0,376	0,3628	3,328	0,0732	0,0193	0,1007	0,0083	0,0275	98,6	0,376	0,3631	3,400	0,0751	0,0205	0,1033	0,0077	0,0282	100,4
0,333	0,3628	3,334	0,0762	0,0169	0,1016	0,0085	0,0254	99,3	0,333	0,3631	3,407	0,0783	0,0183	0,1044	0,0078	0,0261	101,2	0,333	0,3633	3,475	0,0802	0,0194	0,1069	0,0073	0,0267	103,0
0,250	0,3635	3,525	0,0884	0,0147	0,1105	0,0074	0,0221	105,6	0,250	0,3638	3,592	0,0904	0,0158	0,1130	0,0068	0,0226	107,4	0,250	0,3640	3,655	0,0923	0,0168	0,1154	0,0063	0,0231	109,1
0,200	0,3640	3,662	0,0974	0,0130	0,1169	0,0065	0,0195	110,3	0,200	0,3642	3,726	0,0995	0,0139	0,1194	0,0060	0,0199	112,0	0,200	0,3644	3,785	0,1013	0,0147	0,1215	0,0055	0,0203	113,5
0,167	0,3644	3,764	0,1044	0,0116	0,1218	0,0058	0,0174	113,8	0,167	0,3646	3,825	0,1064	0,0124	0,1241	0,0053	0,0177	115,4	0,167	0,3648	3,884	0,1082	0,0131	0,1262	0,0049	0,0180	116,9
0,143	0,3646	3,844	0,1100	0,0105	0,1257	0,0052	0,0157	116,6	0,143	0,3648	3,904	0,1119	0,0112	0,1279	0,0048	0,0160	118,2	0,143	0,3650	3,960	0,1137	0,0118	0,1299	0,0044	0,0162	119,6
		1s	- 3,0 barA,	2s 10 barA	б1=0,333						19	- 3,0 barA	2s 10 barA	б1=0,250						19	s - 3,0 barA,	, 2s 10 barA	б1=0,200			
б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3621	3,132	0,0539	0,0269	0,0898	0,0090	0,0359	90,5	0,667	0,3628	3,307	0,0575	0,0307	0,0959	0,0077	0,0384	94,7	0,667	0,3632	3,429	0,0601	0,0334	0,1002	0,0067	0,0401	97,7
0,500	0,3627	3,292	0,0650	0,0244	0,0975	0,0081	0,0325	96,1	0,500	0,3633	3,450	0,0688	0,0275	0,1031	0,0069	0,0344	100,0	0,500	0,3637	3,564	0,0715	0,0298	0,1072	0,0060	0,0357	102,9
0,429	0,3630	3,382	0,0712	0,0229	0,1018	0,0076	0,0306	99,2	0,429	0,3635	3,532	0,0750	0,0258	0,1072	0,0064	0,0322	103,0	0,429	0,3640	3,649	0,0779	0,0279	0,1114	0,0056	0,0335	105,9
0,376	0,3633	3,461	0,0767	0,0216	0,1056	0,0072	0,0288	102,0	0,376	0,3638	3,605	0,0806	0,0242	0,1108	0,0061	0,0303	105,6	0,376	0,3642	3,711	0,0833	0,0261	0,1147	0,0052	0,0313	108,3
0,333	0,3636	3,534	0,0818	0,0205	0,1091	0,0068	0,0273	104,5	0,333	0,3640	3,673	0,0856	0,0228	0,1142	0,0057	0,0285	108,0	0,333	0,3644	3,775	0,0884	0,0245	0,1178	0,0049	0,0295	110,6
0,250	0,3642	3,709	0,0939	0,0176	0,1174	0,0059	0,0235	110,5	0,250	0,3646	3,834	0,0976	0,0195	0,1219	0,0049	0,0244	113,7	0,250	0,3649	3,927	0,1003	0,0209	0,1253	0,0042	0,0251	116,0
0,200	0,3646	3,837	0,1029	0,0154	0,1234	0,0051	0,0206	114,9	0,200	0,3650	3,955	0,1065	0,0170	0,1277	0,0043	0,0213	117,9	0,200	0,3653	4,038	0,1090	0,0182	0,1308	0,0036	0,0218	120,0
0,167	0,3650	3,933	0,1097	0,0137	0,1280	0,0046	0,0183	118,2	0,167	0,3652	3,991	0,1119	0,0149	0,1305	0,0037	0,0186	120,0	0,167	0,3651	3,969	0,1118	0,0155	0,1304	0,0031	0,0186	120,0
0,143	0,3651	3,967	0,1141	0,0122	0,1304	0,0041	0,0163	120,0	0,143	0,3650	3,937	0,1140	0,0130	0,1303	0,0033	0,0163	120,0	0,143	0,3649	3,917	0,1139	0,0136	0,1302	0,0027	0,0163	120,0
		1s	- 3,0 barA,	2s 10 barA	б1=0,167						19	- 3,0 barA	2s 10 barA	б1=0,143			-									
б2	η _{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	Į								
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	Į								
0,667	0,3635	3,525	0,0621	0,0355	0,1035	0,0059	0,0414	100,0	0,667	0,3638	3,596	0,0636	0,0371	0,1060	0,0053	0,0424	101,8									
0,500	0,3640	3,654	0,0736	0,0315	0,1104	0,0053	0,0368	105,1	0,500	0,3642	3,719	0,0752	0,0329	0,1127	0,0047	0,0376	106,7									
0,429	0,3642	3,726	0,0799	0,0294	0,1142	0,0049	0,0343	107,8	0,429	0,3644	3,790	0,0815	0,0306	0,1165	0,0044	0,0350	109,4									
0,376	0,3645	3,791	0,0854	0,0275	0,1175	0,0046	0,0321	110,3	0,376	0,3647	3,854	0,0871	0,0286	0,1198	0,0041	0,0327	111,9									
0,333	0,3647	3,853	0,0905	0,0258	0,1206	0,0043	0,0302	112,5	0,333	0,3649	3,912	0,0921	0,0269	0,1228	0,0038	0,0307	114,0	Į								
0,250	0,3652	3,998	0,1023	0,0219	0,1279	0,0037	0,0256	117,8	0,250	0,3654	4,053	0,1039	0,0227	0,1298	0,0032	0,0260	119,2	Į								
0,200	0,3653	4,019	0,1089	0,0187	0,1307	0,0031	0,0218	120,0	0,200	0,3652	4,005	0,1088	0,0190	0,1306	0,0027	0,0218	120,0	Į								
0,167	0,3650	3,952	0,1117	0,0160	0,1304	0,0027	0,0186	120,0	0,167	0,3650	3,940	0,1117	0,0163	0,1303	0,0023	0,0186	120,0									
0,143	0,3648	3,902	0,1139	0,0139	0,1301	0,0023	0,0163	120,0	0,143	0,3648	3,892	0,1138	0,0142	0,1301	0,0020	0,0163	120,0	l								

Tab. Z2.19 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 3,0 barA, drugi stopień 10 barA w zależności od stopnia eżekcji 61 dla temperatur kondensatu 120 °C

													130 °C													
		1	s - 3,0 barA	A, 2s 10 bar	А б1=0,5						1s	- 3,0 barA,	2s 10 bar/	б1=0,429						1s	- 3,0 barA,	, 2s 10 barA	б1=0,376			
б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	m ₃	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	m ₂	\dot{m}_3	<i>m</i> ₁₀	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	E _{CRN2s}	m ₂	\dot{m}_3	<i>m</i> ₁₀	\dot{m}_{x1}	<i>m</i> _{x2}	t9
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3612	2,875	0,0484	0,0215	0,0807	0,0108	0,0323	84,2	0,667	0,3616	2,969	0,0504	0,0235	0,0841	0,0101	0,0336	86,5	0,667	0,3619	3,057	0,0523	0,0253	0,0871	0,0095	0,0348	88,7
0,500	0,3619	3,058	0,0594	0,0198	0,0891	0,0099	0,0297	90,2	0,500	0,3622	3,143	0,0614	0,0215	0,0922	0,0092	0,0307	92,4	0,500	0,3625	3,225	0,0634	0,0230	0,0950	0,0087	0,0317	94,4
0,429	0,3622	3,161	0,0656	0,0188	0,0937	0,0094	0,0281	93,6	0,429	0,3625	3,241	0,0677	0,0203	0,0967	0,0087	0,0290	95,7	0,429	0,3628	3,317	0,0696	0,0217	0,0994	0,0082	0,0299	97,6
0,376	0,3626	3,252	0,0711	0,0178	0,0979	0,0089	0,0267	96,6	0,376	0,3628	3,328	0,0732	0,0193	0,1007	0,0083	0,0275	98,6	0,376	0,3631	3,400	0,0751	0,0205	0,1033	0,0077	0,0282	100,4
0,333	0,3628	3,334	0,0762	0,0169	0,1016	0,0085	0,0254	99,3	0,333	0,3631	3,407	0,0783	0,0183	0,1044	0,0078	0,0261	101,2	0,333	0,3633	3,475	0,0802	0,0194	0,1069	0,0073	0,0267	103,0
0,250	0,3635	3,525	0,0884	0,0147	0,1105	0,0074	0,0221	105,6	0,250	0,3638	3,592	0,0904	0,0158	0,1130	0,0068	0,0226	107,4	0,250	0,3640	3,655	0,0923	0,0168	0,1154	0,0063	0,0231	109,1
0,200	0,3640	3,662	0,0974	0,0130	0,1169	0,0065	0,0195	110,3	0,200	0,3642	3,726	0,0995	0,0139	0,1194	0,0060	0,0199	112,0	0,200	0,3644	3,785	0,1013	0,0147	0,1215	0,0055	0,0203	113,5
0,167	0,3644	3,764	0,1044	0,0116	0,1218	0,0058	0,0174	113,8	0,167	0,3646	3,825	0,1064	0,0124	0,1241	0,0053	0,0177	115,4	0,167	0,3648	3,884	0,1082	0,0131	0,1262	0,0049	0,0180	116,9
0,143	0,3646	3,844	0,1100	0,0105	0,1257	0,0052	0,0157	116,6	0,143	0,3648	3,904	0,1119	0,0112	0,1279	0,0048	0,0160	118,2	0,143	0,3650	3,960	0,1137	0,0118	0,1299	0,0044	0,0162	119,6
		1s	- 3,0 barA,	2s 10 barA	б1=0,333						1s	- 3,0 barA,	2s 10 bar	А б1=0,250			-			1s	- 3,0 barA,	, 2s 10 barA	б1=0,200			
б2	η_{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉	б2	η_{CRN2s}	ε _{crn2s}	m ₂	\dot{m}_3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3621	3,132	0,0539	0,0269	0,0898	0,0090	0,0359	90,5	0,667	0,3628	3,307	0,0575	0,0307	0,0959	0,0077	0,0384	94,7	0,667	0,3632	3,429	0,0601	0,0334	0,1002	0,0067	0,0401	97,7
0,500	0,3627	3,292	0,0650	0,0244	0,0975	0,0081	0,0325	96,1	0,500	0,3633	3,450	0,0688	0,0275	0,1031	0,0069	0,0344	100,0	0,500	0,3637	3,564	0,0715	0,0298	0,1072	0,0060	0,0357	102,9
0,429	0,3630	3,382	0,0712	0,0229	0,1018	0,0076	0,0306	99,2	0,429	0,3635	3,532	0,0750	0,0258	0,1072	0,0064	0,0322	103,0	0,429	0,3640	3,649	0,0779	0,0279	0,1114	0,0056	0,0335	105,9
0,376	0,3633	3,461	0,0767	0,0216	0,1056	0,0072	0,0288	102,0	0,376	0,3638	3,605	0,0806	0,0242	0,1108	0,0061	0,0303	105,6	0,376	0,3642	3,711	0,0833	0,0261	0,1147	0,0052	0,0313	108,3
0,333	0,3636	3,534	0,0818	0,0205	0,1091	0,0068	0,0273	104,5	0,333	0,3640	3,673	0,0856	0,0228	0,1142	0,0057	0,0285	108,0	0,333	0,3644	3,775	0,0884	0,0245	0,1178	0,0049	0,0295	110,6
0,250	0,3642	3,709	0,0939	0,0176	0,1174	0,0059	0,0235	110,5	0,250	0,3646	3,834	0,0976	0,0195	0,1219	0,0049	0,0244	113,7	0,250	0,3649	3,927	0,1003	0,0209	0,1253	0,0042	0,0251	116,0
0,200	0,3646	3,837	0,1029	0,0154	0,1234	0,0051	0,0206	114,9	0,200	0,3650	3,955	0,1065	0,0170	0,1277	0,0043	0,0213	117,9	0,200	0,3653	4,041	0,1090	0,0182	0,1309	0,0036	0,0218	120,1
0,167	0,3650	3,933	0,1097	0,0137	0,1280	0,0046	0,0183	118,2	0,167	0,3653	4,046	0,1133	0,0151	0,1321	0,0038	0,0189	121,1	0,167	0,3657	4,152	0,1164	0,0162	0,1358	0,0032	0,0194	123,1
0,143	0,3652	4,009	0,1152	0,0123	0,1317	0,0041	0,0165	120,8	0,143	0,3656	4,118	0,1187	0,0136	0,1356	0,0034	0,0170	123,6	0,143	0,3659	4,200	0,1212	0,0144	0,1385	0,0029	0,0173	125,6
		1s	- 3,0 barA,	2s 10 barA	б1=0,167						1s	- 3,0 barA,	2s 10 bar	61=0,143												
б2	η_{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{crn2s}	<i>m</i> 2	<i>m</i> 3	<i>m</i> ₁₀	<i>m</i> _{x1}	<i>m</i> _{x2}	t9									
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]									
0,667	0,3635	3,525	0,0621	0,0355	0,1035	0,0059	0,0414	100,0	0,667	0,3638	3,596	0,0636	0,0371	0,1060	0,0053	0,0424	101,8									
0,500	0,3640	3,654	0,0736	0,0315	0,1104	0,0053	0,0368	105,1	0,500	0,3642	3,719	0,0752	0,0329	0,1127	0,0047	0,0376	106,7									
0,429	0,3642	3,726	0,0799	0,0294	0,1142	0,0049	0,0343	107,8	0,429	0,3644	3,790	0,0815	0,0306	0,1165	0,0044	0,0350	109,4									
0,376	0,3645	3,791	0,0854	0,0275	0,1175	0,0046	0,0321	110,3	0,376	0,3647	3,854	0,0871	0,0286	0,1198	0,0041	0,0327	111,9									
0,333	0,3647	3,853	0,0905	0,0258	0,1206	0,0043	0,0302	112,5	0,333	0,3649	3,912	0,0921	0,0269	0,1228	0,0038	0,0307	114,0									
0,250	0,3652	3,998	0,1023	0,0219	0,1279	0,0037	0,0256	117,8	0,250	0,3654	4,053	0,1039	0,0227	0,1298	0,0032	0,0260	119,2									
0,200	0,3656	4,108	0,1110	0,0190	0,1332	0,0032	0,0222	121,7	0,200	0,3657	4,159	0,1126	0,0197	0,1351	0,0028	0,0225	123,0									
0,167	0,3659	4,193	0,1177	0,0168	0,1374	0,0028	0,0196	124,7	0,167	0,3660	4,240	0,1192	0,0174	0,1390	0,0025	0,0199	125,9									
0,143	0,3661	4,260	0,1230	0,0151	0,1406	0,0025	0,0176	127,1	0,143	0,3663	4,307	0,1245	0,0156	0,1423	0,0022	0,0178	128,2									

Tab. Z2.20 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 3,0 barA, drugi stopień 10 barA w zależności od stopnia eżekcji 61 dla temperatur kondensatu 130 °C

													100 °C													
		1s	- 6,6 barA,	2s 6,6 bar	А б1=0,66	7					1	Ls - 6,6 bar <i>i</i>	A, 2s 6,6 ba	rA б1=0,5	-	-				1s	- 6,6 barA,	2s 6,6 bar/	А б1=0,429			
б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	m ₂	\dot{m}_3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	m ₃	\dot{m}_{10}	<i>m</i> _{x1}	\dot{m}_{x2}	t9
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3613	2,883	0,0465	0,0186	0,0775	0,0124	0,0310	81,6	0,667	0,3620	3,106	0,0511	0,0227	0,0852	0,0114	0,0341	86,9	0,667	0,3624	3,216	0,0535	0,0250	0,0892	0,0107	0,0357	89,7
0,500	0,3620	3,102	0,0567	0,0170	0,0851	0,0114	0,0284	86,9	0,500	0,3627	3,298	0,0614	0,0205	0,0921	0,0102	0,0307	91,7	0,500	0,3631	3,409	0,0640	0,0224	0,0960	0,0096	0,0320	94,4
0,429	0,3625	3,225	0,0625	0,0161	0,0894	0,0107	0,0268	89,8	0,429	0,3631	3,413	0,0672	0,0192	0,0960	0,0096	0,0288	94,4	0,429	0,3635	3,518	0,0698	0,0210	0,0998	0,0090	0,0300	97,0
0,376	0,3629	3,336	0,0677	0,0153	0,0932	0,0102	0,0255	92,4	0,376	0,3635	3,515	0,0724	0,0181	0,0996	0,0091	0,0272	96,9	0,376	0,3638	3,616	0,0749	0,0197	0,1031	0,0085	0,0282	99,3
0,333	0,3632	3,436	0,0725	0,0145	0,0966	0,0097	0,0242	94,8	0,333	0,3638	3,608	0,0771	0,0171	0,1028	0,0086	0,0257	99,1	0,333	0,3639	3,621	0,0780	0,0182	0,1040	0,0078	0,0260	100,0
0,250	0,3639	3,645	0,0833	0,0125	0,1041	0,0083	0,0208	100,0	0,250	0,3637	3,580	0,0830	0,0138	0,1038	0,0069	0,0208	100,0	0,250	0,3636	3,548	0,0829	0,0145	0,1036	0,0062	0,0207	100,0
0,200	0,3637	3,580	0,0865	0,0104	0,1038	0,0069	0,0173	100,0	0,200	0,3635	3,526	0,0862	0,0115	0,1035	0,0057	0,0172	100,0	0,200	0,3634	3,499	0,0861	0,0121	0,1034	0,0052	0,0172	100,0
0,167	0,3635	3,534	0,0887	0,0089	0,1035	0,0059	0,0148	100,0	0,167	0,3634	3,488	0,0885	0,0098	0,1033	0,0049	0,0148	100,0	0,167	0,3633	3,465	0,0884	0,0103	0,1032	0,0044	0,0147	100,0
0,143	0,3634	3,499	0,0904	0,0077	0,1033	0,0052	0,0129	100,0	0,143	0,3633	3,459	0,0903	0,0086	0,1031	0,0043	0,0129	100,0	0,143	0,3632	3,439	0,0902	0,0090	0,1030	0,0039	0,0129	100,0
		1s	- 6,6 barA,	2s 6,6 bar	А б1=0,376	5					19	- 6,6 barA,	2s 6,6 bar/	А б1=0,333	3					1s	- 6,6 barA,	2s 6,6 bar/	А б1=0,250			
б2	η_{CRN2s}	ECRN2s	<i>m</i> ₂	m̂3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	m ₂	<i>m</i> 3	<i>m</i> ₁₀	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	<i>m</i> ₂	\dot{m}_3	<i>m</i> ₁₀	\dot{m}_{x1}	<i>m</i> _{x2}	t9
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3628	3,319	0,0557	0,0270	0,0928	0,0101	0,0371	92,2	0,667	0,3631	3,414	0,0577	0,0288	0,0961	0,0096	0,0384	94,5	0,667	0,3639	3,633	0,0623	0,0332	0,1038	0,0083	0,0415	99,8
0,500	0,3635	3,507	0,0663	0,0241	0,0994	0,0091	0,0331	96,7	0,500	0,3638	3,596	0,0683	0,0256	0,1025	0,0085	0,0342	98,9	0,500	0,3637	3,580	0,0692	0,0277	0,1038	0,0069	0,0346	100,0
0,429	0,3638	3,613	0,0721	0,0225	0,1030	0,0085	0,0309	99,3	0,429	0,3639	3,621	0,0727	0,0234	0,1040	0,0078	0,0312	100,0	0,429	0,3636	3,547	0,0725	0,0249	0,1036	0,0062	0,0311	100,0
0,376	0,3638	3,619	0,0755	0,0206	0,1040	0,0078	0,0284	100,0	0,376	0,3637	3,588	0,0754	0,0213	0,1038	0,0071	0,0284	100,0	0,376	0,3635	3,521	0,0752	0,0226	0,1035	0,0057	0,0283	100,0
0,333	0,3637	3,588	0,0778	0,0189	0,1038	0,0071	0,0259	100,0	0,333	0,3636	3,560	0,0777	0,0194	0,1037	0,0065	0,0259	100,0	0,333	0,3634	3,499	0,0775	0,0207	0,1034	0,0052	0,0258	100,0
0,250	0,3635	3,522	0,0828	0,0150	0,1035	0,0057	0,0207	100,0	0,250	0,3634	3,499	0,0827	0,0155	0,1034	0,0052	0,0207	100,0	0,250	0,3633	3,451	0,0825	0,0165	0,1031	0,0041	0,0206	100,0
0,200	0,3634	3,478	0,0860	0,0125	0,1032	0,0047	0,0172	100,0	0,200	0,3633	3,459	0,0860	0,0129	0,1031	0,0043	0,0172	100,0	0,200	0,3631	3,419	0,0858	0,0137	0,1030	0,0034	0,0172	100,0
0,167	0,3632	3,446	0,0884	0,0107	0,1031	0,0040	0,0147	100,0	0,167	0,3632	3,430	0,0883	0,0110	0,1030	0,0037	0,0147	100,0	0,167	0,3631	3,396	0,0881	0,0118	0,1028	0,0029	0,0147	100,0
0,143	0,3632	3,423	0,0901	0,0094	0,1030	0,0035	0,0129	100,0	0,143	0,3631	3,409	0,0900	0,0096	0,1029	0,0032	0,0129	100,0	0,143	0,3630	3,379	0,0899	0,0103	0,1028	0,0026	0,0128	100,0
		1s -	6,6 barA, 2	s 10 6,6 ba	arA б1=0,2	00	r				19	- 6,6 barA,	2s 6,6 bar/	А б1=0,167	/		1		1	1s	- 6,6 barA,	2s 6,6 bar/	A б1=0,143			
б2	η_{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	<i>m</i> ₂	<i>m</i> 3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂ ₃	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3637	3,579	0,0623	0,0346	0,1038	0,0069	0,0415	100,0	0,667	0,3635	3,533	0,0621	0,0355	0,1035	0,0059	0,0414	100,0	0,667	0,3634	3,498	0,0620	0,0362	0,1034	0,0052	0,0413	100,0
0,500	0,3635	3,525	0,0690	0,0287	0,1035	0,0057	0,0345	100,0	0,500	0,3634	3,487	0,0689	0,0295	0,1033	0,0049	0,0344	100,0	0,500	0,3633	3,458	0,0688	0,0301	0,1032	0,0043	0,0344	100,0
0,429	0,3634	3,499	0,0723	0,0259	0,1034	0,0052	0,0310	100,0	0,429	0,3633	3,464	0,0722	0,0266	0,1032	0,0044	0,0310	100,0	0,429	0,3632	3,438	0,0721	0,0271	0,1031	0,0039	0,0309	100,0
0,376	0,3633	3,477	0,0750	0,0235	0,1032	0,0047	0,0282	100,0	0,376	0,3632	3,446	0,0749	0,0241	0,1031	0,0040	0,0282	100,0	0,376	0,3632	3,422	0,0748	0,0246	0,1030	0,0035	0,0281	100,0
0,333	0,3633	3,459	0,0774	0,0215	0,1032	0,0043	0,0258	100,0	0,333	0,3632	3,430	0,0773	0,0221	0,1030	0,0037	0,0258	100,0	0,333	0,3631	3,408	0,0772	0,0225	0,1029	0,0032	0,0257	100,0
0,250	0,3631	3,419	0,0824	0,0172	0,1030	0,0034	0,0206	100,0	0,250	0,3631	3,396	0,0823	0,0176	0,1028	0,0029	0,0206	100,0	0,250	0,3630	3,379	0,0822	0,0180	0,1028	0,0026	0,0206	100,0
0,200	0,3631	3,392	0,0857	0,0143	0,1028	0,0029	0,0171	100,0	0,200	0,3630	3,373	0,0856	0,0147	0,1027	0,0024	0,0171	100,0	0,200	0,3629	3,359	0,0855	0,0150	0,1027	0,0021	0,0171	100,0
0,167	0,3630	3,373	0,0880	0,0122	0,1027	0,0024	0,0147	100,0	0,167	0,3629	3,357	0,0880	0,0126	0,1026	0,0021	0,0147	100,0	0,167	0,3629	3,345	0,0879	0,0128	0,1026	0,0018	0,0147	100,0

Tab. Z2.21 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 6,6 barA w zależności od stopnia eżekcji 61 dla temperatur kondensatu 100 °C

													110 °C													
		1s	- 6,6 barA,	2s 6,6 bar/	А б1=0,667	7		1			. 1	s - 6,6 bar/	, 2s 6,6 ba	rA б1=0,5						1s	- 6,6 barA,	2s 6,6 bar/	А б1=0,429			
б2	η_{CRN2s}	ε _{CRN2s}	m ₂	m ₃	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	m ₃	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t9
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3613	2,883	0,0465	0,0186	0,0775	0,0124	0,0310	81,6	0,667	0,3620	3,106	0,0511	0,0227	0,0852	0,0114	0,0341	86,9	0,667	0,3624	3,216	0,0535	0,0250	0,0892	0,0107	0,0357	89,7
0,500	0,3620	3,102	0,0567	0,0170	0,0851	0,0114	0,0284	86,9	0,500	0,3627	3,298	0,0614	0,0205	0,0921	0,0102	0,0307	91,7	0,500	0,3631	3,409	0,0640	0,0224	0,0960	0,0096	0,0320	94,4
0,429	0,3625	3,225	0,0625	0,0161	0,0894	0,0107	0,0268	89,8	0,429	0,3631	3,413	0,0672	0,0192	0,0960	0,0096	0,0288	94,4	0,429	0,3635	3,518	0,0698	0,0210	0,0998	0,0090	0,0300	97,0
0,376	0,3629	3,336	0,0677	0,0153	0,0932	0,0102	0,0255	92,4	0,376	0,3635	3,515	0,0724	0,0181	0,0996	0,0091	0,0272	96,9	0,376	0,3638	3,616	0,0749	0,0197	0,1031	0,0085	0,0282	99,3
0,333	0,3632	3,436	0,0725	0,0145	0,0966	0,0097	0,0242	94,8	0,333	0,3638	3,608	0,0771	0,0171	0,1028	0,0086	0,0257	99,1	0,333	0,3642	3,705	0,0796	0,0186	0,1062	0,0080	0,0265	101,5
0,250	0,3640	3,668	0,0837	0,0126	0,1047	0,0084	0,0209	100,4	0,250	0,3646	3,829	0,0883	0,0147	0,1103	0,0074	0,0221	104,3	0,250	0,3649	3,920	0,0907	0,0159	0,1134	0,0068	0,0227	106,5
0,200	0,3646	3,836	0,0921	0,0110	0,1105	0,0074	0,0184	104,4	0,200	0,3652	3,992	0,0965	0,0129	0,1158	0,0064	0,0193	108,1	0,200	0,3654	4,070	0,0988	0,0138	0,1185	0,0059	0,0198	110,0
0,167	0,3651	3,963	0,0985	0,0098	0,1149	0,0066	0,0164	107,5	0,167	0,3654	4,056	0,1015	0,0113	0,1185	0,0056	0,0169	110,0	0,167	0,3653	4,029	0,1014	0,0118	0,1183	0,0051	0,0169	110,0
0,143	0,3654	4,061	0,1035	0,0089	0,1183	0,0059	0,0148	109,9	0,143	0,3653	4,023	0,1035	0,0099	0,1183	0,0049	0,0148	110,0	0,143	0,3652	3,999	0,1034	0,0103	0,1182	0,0044	0,0148	110,0
		1s	- 6,6 barA,	2s6,6 barA	А б1=0,376	;					. 1	Ls - 6,6 bar/	A, 6,6 barA	б1=0,333						1s	- 6,6 barA,	2s 6,6 bar/	А б1=0,250			
б2	η_{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t9	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t9
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3628	3,319	0,0557	0,0270	0,0928	0,0101	0,0371	92,2	0,667	0,3631	3,414	0,0577	0,0288	0,0961	0,0096	0,0384	94,5	0,667	0,3639	3,633	0,0623	0,0332	0,1038	0,0083	0,0415	99,8
0,500	0,3635	3,507	0,0663	0,0241	0,0994	0,0091	0,0331	96,7	0,500	0,3638	3,596	0,0683	0,0256	0,1025	0,0085	0,0342	98,9	0,500	0,3645	3,802	0,0731	0,0292	0,1096	0,0073	0,0365	103,8
0,429	0,3638	3,613	0,0721	0,0225	0,1030	0,0085	0,0309	99,3	0,429	0,3641	3,697	0,0741	0,0239	0,1060	0,0080	0,0318	101,3	0,429	0,3648	3,897	0,0790	0,0271	0,1129	0,0068	0,0339	106,1
0,376	0,3642	3,707	0,0772	0,0211	0,1063	0,0079	0,0290	101,5	0,376	0,3644	3,789	0,0793	0,0224	0,1091	0,0075	0,0298	103,5	0,376	0,3651	3,983	0,0841	0,0253	0,1157	0,0063	0,0316	108,1
0,333	0,3645	3,793	0,0819	0,0198	0,1092	0,0075	0,0273	103,5	0,333	0,3647	3,874	0,0840	0,0210	0,1120	0,0070	0,0280	105,5	0,333	0,3654	4,063	0,0888	0,0237	0,1184	0,0059	0,0296	109,9
0,250	0,3652	3,999	0,0929	0,0169	0,1161	0,0063	0,0232	108,4	0,250	0,3654	4,069	0,0948	0,0178	0,1185	0,0059	0,0237	110,0	0,250	0,3652	4,013	0,0946	0,0189	0,1183	0,0047	0,0237	110,0
0,200	0,3653	4,044	0,0987	0,0143	0,1184	0,0054	0,0197	110,0	0,200	0,3653	4,022	0,0986	0,0148	0,1183	0,0049	0,0197	110,0	0,200	0,3651	3,976	0,0984	0,0157	0,1181	0,0039	0,0197	110,0
0,167	0,3652	4,008	0,1013	0,0123	0,1182	0,0046	0,0169	110,0	0,167	0,3651	3,989	0,1013	0,0127	0,1181	0,0042	0,0169	110,0	0,167	0,3650	3,949	0,1011	0,0135	0,1179	0,0034	0,0168	110,0
0,143	0,3651	3,980	0,1033	0,0107	0,1181	0,0040	0,0148	110,0	0,143	0,3651	3,964	0,1033	0,0111	0,1180	0,0037	0,0148	110,0	0,143	0,3649	3,929	0,1031	0,0118	0,1178	0,0029	0,0147	110,0
		1s	- 6,6 barA,	2s 6,6 bar/	А б1=0,200)					1s	- 6,6 barA,	2s 6,6 bar/	А б1=0,167						1s	- 6,6 barA,	2s 6,6 bar/	А б1=0,143			
б2	η _{CRN2s}	ε _{crn2s}	m₁₂	m̂3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t ₉	б2	η _{CRN2s}	ε _{CRN2s}	m ₂	\dot{m}_3	<i>m</i> ₁₀	<i>m</i> _{x1}	<i>m</i> _{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	<i>m</i> ₁₀	<i>m</i> _{x1}	<i>m</i> _{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3644	3,789	0,0656	0,0364	0,1093	0,0073	0,0437	103,6	0,667	0,3649	3,909	0,0681	0,0389	0,1135	0,0065	0,0454	106,6	0,667	0,3652	4,004	0,0701	0,0409	0,1168	0,0058	0,0467	108,9
0,500	0,3650	3,951	0,0765	0,0319	0,1148	0,0064	0,0383	107,4	0,500	0,3654	4,055	0,0790	0,0339	0,1185	0,0056	0,0395	110,0	0,500	0,3653	4,022	0,0789	0,0345	0,1183	0,0049	0,0394	110,0
0,429	0,3653	4,043	0,0825	0,0295	0,1179	0,0059	0,0354	109,5	0,429	0,3653	4,029	0,0828	0,0305	0,1183	0,0051	0,0355	110,0	0,429	0,3652	3,999	0,0827	0,0311	0,1182	0,0044	0,0355	110,0
0,376	0,3653	4,044	0,0861	0,0270	0,1184	0,0054	0,0324	110,0	0,376	0,3652	4,007	0,0859	0,0277	0,1182	0,0046	0,0323	110,0	0,376	0,3651	3,980	0,0858	0,0282	0,1181	0,0040	0,0323	110,0
0,333	0,3653	4,022	0,0887	0,0246	0,1183	0,0049	0,0296	110,0	0,333	0,3651	3,989	0,0886	0,0253	0,1181	0,0042	0,0295	110,0	0,333	0,3651	3,964	0,0885	0,0258	0,1180	0,0037	0,0295	110,0
0,250	0,3651	3,976	0,0945	0,0197	0,1181	0,0039	0,0236	110,0	0,250	0,3650	3,949	0,0944	0,0202	0,1179	0,0034	0,0236	110,0	0,250	0,3649	3,929	0,0943	0,0206	0,1178	0,0029	0,0236	110,0
0,200	0,3650	3,945	0,0983	0,0164	0,1179	0,0033	0,0197	110,0	0,200	0,3649	3,923	0,0982	0,0168	0,1178	0,0028	0,0196	110,0	0,200	0,3649	3,906	0,0981	0,0172	0,1177	0,0025	0,0196	110,0
0,167	0,3649	3,923	0,1010	0,0140	0,1178	0,0028	0,0168	110,0	0,167	0,3648	3,904	0,1009	0,0144	0,1177	0,0024	0,0168	110,0	0,167	0,3648	3,890	0,1008	0,0147	0,1176	0,0021	0,0168	110,0
0,143	0,3649	3,906	0,1030	0,0123	0,1177	0,0025	0,0147	110,0	0,143	0,3648	3,890	0,1029	0,0126	0,1176	0,0021	0,0147	110,0	0,143	0,3648	3,877	0,1029	0,0129	0,1176	0,0018	0,0147	110,0

Tab. Z2.22 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 6,6 barA w zależności od stopnia eżekcji 61 dla temperatur kondensatu 110 °C

													120 °C													
	-	1s	- 6,6 barA,	2s 6,6 bar/	А б1=0,667	7					1	s - 6,6 bar/	A, 2s 6,6 ba	rA б1=0,5						1s	- 6,6 barA,	2s 6,6 bar/	А б1=0,429)		
б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	m ₃	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	<i>m</i> 3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3613	2,883	0,0465	0,0186	0,0775	0,0124	0,0310	81,6	0,667	0,3620	3,106	0,0511	0,0227	0,0852	0,0114	0,0341	86,9	0,667	0,3624	3,216	0,0535	0,0250	0,0892	0,0107	0,0357	89,7
0,500	0,3620	3,102	0,0567	0,0170	0,0851	0,0114	0,0284	86,9	0,500	0,3627	3,298	0,0614	0,0205	0,0921	0,0102	0,0307	91,7	0,500	0,3631	3,409	0,0640	0,0224	0,0960	0,0096	0,0320	94,4
0,429	0,3625	3,225	0,0625	0,0161	0,0894	0,0107	0,0268	89,8	0,429	0,3631	3,413	0,0672	0,0192	0,0960	0,0096	0,0288	94,4	0,429	0,3635	3,518	0,0698	0,0210	0,0998	0,0090	0,0300	97,0
0,376	0,3629	3,336	0,0677	0,0153	0,0932	0,0102	0,0255	92,4	0,376	0,3635	3,515	0,0724	0,0181	0,0996	0,0091	0,0272	96,9	0,376	0,3638	3,616	0,0749	0,0197	0,1031	0,0085	0,0282	99,3
0,333	0,3632	3,436	0,0725	0,0145	0,0966	0,0097	0,0242	94,8	0,333	0,3638	3,608	0,0771	0,0171	0,1028	0,0086	0,0257	99,1	0,333	0,3642	3,705	0,0796	0,0186	0,1062	0,0080	0,0265	101,5
0,250	0,3640	3,668	0,0837	0,0126	0,1047	0,0084	0,0209	100,4	0,250	0,3646	3,829	0,0883	0,0147	0,1103	0,0074	0,0221	104,3	0,250	0,3649	3,920	0,0907	0,0159	0,1134	0,0068	0,0227	106,5
0,200	0,3646	3,836	0,0921	0,0110	0,1105	0,0074	0,0184	104,4	0,200	0,3652	3,992	0,0965	0,0129	0,1158	0,0064	0,0193	108,1	0,200	0,3655	4,078	0,0990	0,0138	0,1188	0,0059	0,0198	110,1
0,167	0,3651	3,963	0,0985	0,0098	0,1149	0,0066	0,0164	107,5	0,167	0,3656	4,115	0,1029	0,0114	0,1200	0,0057	0,0171	111,0	0,167	0,3659	4,198	0,1052	0,0123	0,1228	0,0053	0,0175	112,9
0,143	0,3654	4,061	0,1035	0,0089	0,1183	0,0059	0,0148	109,9	0,143	0,3659	4,210	0,1078	0,0103	0,1233	0,0051	0,0154	113,3	0,143	0,3662	4,294	0,1102	0,0110	0,1260	0,0047	0,0157	115,1
		1s	- 6,6 barA,	2s6,6 barA	А б1=0,376	5					1	Ls - 6,6 bar/	A, 6,6 barA	б1=0,333						1s	- 6,6 barA,	2s 6,6 bar/	А б1=0,250	1		
б2	η _{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t9	б2	η_{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η_{CRN2s}	E _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3628	3,319	0,0557	0,0270	0,0928	0,0101	0,0371	92,2	0,667	0,3631	3,414	0,0577	0,0288	0,0961	0,0096	0,0384	94,5	0,667	0,3639	3,633	0,0623	0,0332	0,1038	0,0083	0,0415	99,8
0,500	0,3635	3,507	0,0663	0,0241	0,0994	0,0091	0,0331	96,7	0,500	0,3638	3,596	0,0683	0,0256	0,1025	0,0085	0,0342	98,9	0,500	0,3645	3,802	0,0731	0,0292	0,1096	0,0073	0,0365	103,8
0,429	0,3638	3,613	0,0721	0,0225	0,1030	0,0085	0,0309	99,3	0,429	0,3641	3,697	0,0741	0,0239	0,1060	0,0080	0,0318	101,3	0,429	0,3648	3,897	0,0790	0,0271	0,1129	0,0068	0,0339	106,1
0,376	0,3642	3,707	0,0772	0,0211	0,1063	0,0079	0,0290	101,5	0,376	0,3644	3,789	0,0793	0,0224	0,1091	0,0075	0,0298	103,5	0,376	0,3651	3,983	0,0841	0,0253	0,1157	0,0063	0,0316	108,1
0,333	0,3645	3,793	0,0819	0,0198	0,1092	0,0075	0,0273	103,5	0,333	0,3647	3,874	0,0840	0,0210	0,1120	0,0070	0,0280	105,5	0,333	0,3654	4,063	0,0888	0,0237	0,1184	0,0059	0,0296	109,9
0,250	0,3652	3,999	0,0929	0,0169	0,1161	0,0063	0,0232	108,4	0,250	0,3654	4,075	0,0949	0,0178	0,1187	0,0059	0,0237	110,1	0,250	0,3660	4,234	0,0993	0,0199	0,1241	0,0050	0,0248	113,8
0,200	0,3657	4,155	0,1011	0,0147	0,1213	0,0055	0,0202	111,9	0,200	0,3660	4,226	0,1030	0,0155	0,1237	0,0052	0,0206	113,5	0,200	0,3666	4,390	0,1075	0,0172	0,1291	0,0043	0,0215	117,2
0,167	0,3661	4,273	0,1073	0,0130	0,1252	0,0049	0,0179	114,6	0,167	0,3664	4,341	0,1093	0,0137	0,1275	0,0046	0,0182	116,1	0,167	0,3669	4,499	0,1136	0,0151	0,1326	0,0038	0,0189	119,6
0,143	0,3665	4,366	0,1123	0,0117	0,1283	0,0044	0,0160	116,7	0,143	0,3667	4,432	0,1141	0,0122	0,1304	0,0041	0,0163	118,2	0,143	0,3669	4,497	0,1164	0,0133	0,1330	0,0033	0,0166	120,0
		1s	- 6,6 barA,	2s 6,6 bar/	А б1=0,200)					1s	- 6,6 barA,	2s 6,6 bar/	А б1=0,167	,					1s	- 6,6 barA,	2s 6,6 bar/	А б1=0,143			
б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3644	3,789	0,0656	0,0364	0,1093	0,0073	0,0437	103,6	0,667	0,3649	3,909	0,0681	0,0389	0,1135	0,0065	0,0454	106,6	0,667	0,3652	4,004	0,0701	0,0409	0,1168	0,0058	0,0467	108,9
0,500	0,3650	3,951	0,0765	0,0319	0,1148	0,0064	0,0383	107,4	0,500	0,3654	4,067	0,0792	0,0339	0,1188	0,0057	0,0396	110,2	0,500	0,3657	4,157	0,0813	0,0356	0,1219	0,0051	0,0406	112,4
0,429	0,3653	4,043	0,0825	0,0295	0,1179	0,0059	0,0354	109,5	0,429	0,3657	4,155	0,0851	0,0313	0,1217	0,0052	0,0365	112,2	0,429	0,3660	4,241	0,0872	0,0327	0,1246	0,0047	0,0374	114,2
0,376	0,3656	4,125	0,0876	0,0274	0,1206	0,0055	0,0329	111,4	0,376	0,3660	4,235	0,0903	0,0291	0,1243	0,0049	0,0340	114,0	0,376	0,3663	4,321	0,0924	0,0304	0,1271	0,0043	0,0347	116,0
0,333	0,3659	4,204	0,0923	0,0256	0,1231	0,0051	0,0308	113,1	0,333	0,3663	4,308	0,0949	0,0271	0,1266	0,0045	0,0316	115,6	0,333	0,3666	4,392	0,0971	0,0283	0,1294	0,0040	0,0324	117,5
0,250	0,3665	4,379	0,1030	0,0215	0,1288	0,0043	0,0258	117,1	0,250	0,3669	4,481	0,1057	0,0226	0,1321	0,0038	0,0264	119,3	0,250	0,3669	4,497	0,1064	0,0233	0,1330	0,0033	0,0266	120,0
0,200	0,3670	4,514	0,1109	0,0185	0,1330	0,0037	0,0222	120,0	0,200	0,3669	4,490	0,1108	0,0190	0,1329	0,0032	0,0222	120,0	0,200	0,3668	4,471	0,1107	0,0194	0,1329	0,0028	0,0221	120,0
0,167	0,3669	4,490	0,1140	0,0158	0,1329	0,0032	0,0190	120,0	0,167	0,3668	4,468	0,1139	0,0163	0,1328	0,0027	0,0190	120,0	0,167	0,3668	4,452	0,1138	0,0166	0,1328	0,0024	0,0190	120,0
0,143	0,3668	4,471	0,1162	0,0138	0,1329	0,0028	0,0166	120,0	0,143	0,3668	4,452	0,1162	0,0142	0,1328	0,0024	0,0166	120,0	0,143	0,3667	4,438	0,1161	0,0145	0,1327	0,0021	0,0166	120,0

Tab. Z2.23 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 6,6 barA w zależności od stopnia eżekcji 61 dla temperatur kondensatu 120 °C

													130 °C													
	-	1s	- 6,6 barA,	2s 6,6 bar/	А б1=0,667	7					1	s - 6,6 bar/	A, 2s 6,6 ba	rA б1=0,5	-					1s	- 6,6 barA,	2s 6,6 bar	А б1=0,429			
б2	η _{CRN2s}	ε _{CRN2s}	m̂2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	m ₂	m ₃	<i>m</i> ₁₀	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	m ₂	m ₃	<i>m</i> ₁₀	\dot{m}_{x1}	\dot{m}_{x2}	t9
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3613	2,883	0,0465	0,0186	0,0775	0,0124	0,0310	81,6	0,667	0,3620	3,106	0,0511	0,0227	0,0852	0,0114	0,0341	86,9	0,667	0,3624	3,216	0,0535	0,0250	0,0892	0,0107	0,0357	89,7
0,500	0,3620	3,102	0,0567	0,0170	0,0851	0,0114	0,0284	86,9	0,500	0,3627	3,298	0,0614	0,0205	0,0921	0,0102	0,0307	91,7	0,500	0,3631	3,409	0,0640	0,0224	0,0960	0,0096	0,0320	94,4
0,429	0,3625	3,225	0,0625	0,0161	0,0894	0,0107	0,0268	89,8	0,429	0,3631	3,413	0,0672	0,0192	0,0960	0,0096	0,0288	94,4	0,429	0,3635	3,518	0,0698	0,0210	0,0998	0,0090	0,0300	97,0
0,376	0,3629	3,336	0,0677	0,0153	0,0932	0,0102	0,0255	92,4	0,376	0,3635	3,515	0,0724	0,0181	0,0996	0,0091	0,0272	96,9	0,376	0,3638	3,616	0,0749	0,0197	0,1031	0,0085	0,0282	99,3
0,333	0,3632	3,436	0,0725	0,0145	0,0966	0,0097	0,0242	94,8	0,333	0,3638	3,608	0,0771	0,0171	0,1028	0,0086	0,0257	99,1	0,333	0,3642	3,705	0,0796	0,0186	0,1062	0,0080	0,0265	101,5
0,250	0,3640	3,668	0,0837	0,0126	0,1047	0,0084	0,0209	100,4	0,250	0,3646	3,829	0,0883	0,0147	0,1103	0,0074	0,0221	104,3	0,250	0,3649	3,920	0,0907	0,0159	0,1134	0,0068	0,0227	106,5
0,200	0,3646	3,836	0,0921	0,0110	0,1105	0,0074	0,0184	104,4	0,200	0,3652	3,992	0,0965	0,0129	0,1158	0,0064	0,0193	108,1	0,200	0,3655	4,078	0,0990	0,0138	0,1188	0,0059	0,0198	110,1
0,167	0,3651	3,963	0,0985	0,0098	0,1149	0,0066	0,0164	107,5	0,167	0,3656	4,115	0,1029	0,0114	0,1200	0,0057	0,0171	111,0	0,167	0,3659	4,198	0,1052	0,0123	0,1228	0,0053	0,0175	112,9
0,143	0,3654	4,061	0,1035	0,0089	0,1183	0,0059	0,0148	109,9	0,143	0,3659	4,210	0,1078	0,0103	0,1233	0,0051	0,0154	113,3	0,143	0,3662	4,294	0,1102	0,0110	0,1260	0,0047	0,0157	115,1
		1s	- 6,6 barA,	2s6,6 barA	А б1=0,376	5		_		-	1	Ls - 6,6 bar/	A, 6,6 barA	б1=0,333						1s	- 6,6 barA,	2s 6,6 bar	А б1=0,250	0		
б2	η_{CRN2s}	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						t9	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	<i>m</i> 3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3628	3,319	0,0557	0,0270	0,0928	0,0101	0,0371	92,2	0,667	0,3631	3,414	0,0577	0,0288	0,0961	0,0096	0,0384	94,5	0,667	0,3639	3,633	0,0623	0,0332	0,1038	0,0083	0,0415	99,8
0,500	0,3635	3,507	0,0663	0,0241	0,0994	0,0091	0,0331	96,7	0,500	0,3638	3,596	0,0683	0,0256	0,1025	0,0085	0,0342	98,9	0,500	0,3645	3,802	0,0731	0,0292	0,1096	0,0073	0,0365	103,8
0,429	0,3638	3,613	0,0721	0,0225	0,1030	0,0085	0,0309	99,3	0,429	0,3641	3,697	0,0741	0,0239	0,1060	0,0080	0,0318	101,3	0,429	0,3648	3,897	0,0790	0,0271	0,1129	0,0068	0,0339	106,1
0,376	0,3642	3,707	0,0772	0,0211	0,1063	0,0079	0,0290	101,5	0,376	0,3644	3,789	0,0793	0,0224	0,1091	0,0075	0,0298	103,5	0,376	0,3651	3,983	0,0841	0,0253	0,1157	0,0063	0,0316	108,1
0,333	0,3645	3,793	0,0819	0,0198	0,1092	0,0075	0,0273	103,5	0,333	0,3647	3,874	0,0840	0,0210	0,1120	0,0070	0,0280	105,5	0,333	0,3654	4,063	0,0888	0,0237	0,1184	0,0059	0,0296	109,9
0,250	0,3652	3,999	0,0929	0,0169	0,1161	0,0063	0,0232	108,4	0,250	0,3654	4,075	0,0949	0,0178	0,1187	0,0059	0,0237	110,1	0,250	0,3660	4,234	0,0993	0,0199	0,1241	0,0050	0,0248	113,8
0,200	0,3657	4,155	0,1011	0,0147	0,1213	0,0055	0,0202	111,9	0,200	0,3660	4,226	0,1030	0,0155	0,1237	0,0052	0,0206	113,5	0,200	0,3666	4,390	0,1075	0,0172	0,1291	0,0043	0,0215	117,2
0,167	0,3661	4,273	0,1073	0,0130	0,1252	0,0049	0,0179	114,6	0,167	0,3664	4,341	0,1093	0,0137	0,1275	0,0046	0,0182	116,1	0,167	0,3669	4,499	0,1136	0,0151	0,1326	0,0038	0,0189	119,6
0,143	0,3665	4,366	0,1123	0,0117	0,1283	0,0044	0,0160	116,7	0,143	0,3667	4,432	0,1141	0,0122	0,1304	0,0041	0,0163	118,2	0,143	0,3672	4,586	0,1184	0,0135	0,1353	0,0034	0,0169	121,5
		1s	- 6,6 barA,	2s 6,6 bar/	А б1=0,200	0					1s	- 6,6 barA,	2s 6,6 bar/	А б1=0,167	,					1s	- 6,6 barA,	2s 6,6 bar	А б1=0,143			
б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m ₃	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3644	3,789	0,0656	0,0364	0,1093	0,0073	0,0437	103,6	0,667	0,3649	3,909	0,0681	0,0389	0,1135	0,0065	0,0454	106,6	0,667	0,3652	4,004	0,0701	0,0409	0,1168	0,0058	0,0467	108,9
0,500	0,3650	3,951	0,0765	0,0319	0,1148	0,0064	0,0383	107,4	0,500	0,3654	4,067	0,0792	0,0339	0,1188	0,0057	0,0396	110,2	0,500	0,3657	4,157	0,0813	0,0356	0,1219	0,0051	0,0406	112,4
0,429	0,3653	4,043	0,0825	0,0295	0,1179	0,0059	0,0354	109,5	0,429	0,3657	4,155	0,0851	0,0313	0,1217	0,0052	0,0365	112,2	0,429	0,3660	4,241	0,0872	0,0327	0,1246	0,0047	0,0374	114,2
0,376	0,3656	4,125	0,0876	0,0274	0,1206	0,0055	0,0329	111,4	0,376	0,3660	4,235	0,0903	0,0291	0,1243	0,0049	0,0340	114,0	0,376	0,3663	4,321	0,0924	0,0304	0,1271	0,0043	0,0347	116,0
0,333	0,3659	4,204	0,0923	0,0256	0,1231	0,0051	0,0308	113,1	0,333	0,3663	4,308	0,0949	0,0271	0,1266	0,0045	0,0316	115,6	0,333	0,3666	4,392	0,0971	0,0283	0,1294	0,0040	0,0324	117,5
0,250	0,3665	4,379	0,1030	0,0215	0,1288	0,0043	0,0258	117,1	0,250	0,3669	4,481	0,1057	0,0226	0,1321	0,0038	0,0264	119,3	0,250	0,3672	4,561	0,1077	0,0236	0,1347	0,0034	0,0269	121,1
0,200	0,3670	4,514	0,1109	0,0185	0,1330	0,0037	0,0222	120,0	0,200	0,3673	4,609	0,1134	0,0194	0,1361	0,0032	0,0227	122,1	0,200	0,3676	4,685	0,1154	0,0202	0,1385	0,0029	0,0231	123,7
0,167	0,3670	4,516	0,1145	0,0159	0,1336	0,0032	0,0191	122,2	0,167	0,3677	4,709	0,1193	0,0170	0,1392	0,0028	0,0199	124,2	0,167	0,3679	4,782	0,1212	0,0177	0,1414	0,0025	0,0202	125,7
0,143	0,3673	4,598	0,1192	0,0142	0,1362	0,0028	0,0170	124,0	0,143	0,3680	4,788	0,1239	0,0152	0,1416	0,0025	0,0177	125,8	0,143	0,3682	4,858	0,1258	0,0157	0,1437	0,0022	0,0180	127,3

Tab. Z2.24 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 6,6 barA w zależności od stopnia eżekcji 61 dla temperatur kondensatu 130 °C

												100 °C														
		1s	- 6,6 barA,	2s 10 barA	б1=0,667						1	Ls - 6,6 bar	A, 2s 10 bai	А б1=0,5						19	- 6,6 barA,	2s 10 bar	б1=0,429			
б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	m ₃	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t9	б2	η_{CRN2s}	ε _{CRN2s}	m ₂	m̂ ₃	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3607	2,736	0,0477	0,0191	0,0796	0,0127	0,0318	83,9	0,667	0,3614	2,928	0,0523	0,0232	0,0871	0,0116	0,0349	89,2	0,667	0,3618	3,034	0,0548	0,0255	0,0913	0,0110	0,0365	92,1
0,500	0,3614	2,926	0,0586	0,0176	0,0878	0,0117	0,0293	89,8	0,500	0,3620	3,100	0,0632	0,0211	0,0949	0,0105	0,0316	94,7	0,500	0,3624	3,197	0,0658	0,0230	0,0988	0,0099	0,0329	97,5
0,429	0,3618	3,034	0,0647	0,0167	0,0925	0,0111	0,0278	93,1	0,429	0,3624	3,199	0,0694	0,0199	0,0992	0,0099	0,0298	97,9	0,429	0,3626	3,264	0,0715	0,0215	0,1022	0,0092	0,0307	100,0
0,376	0,3621	3,128	0,0702	0,0158	0,0966	0,0106	0,0264	96,1	0,376	0,3626	3,252	0,0742	0,0186	0,1021	0,0093	0,0279	100,0	0,376	0,3624	3,209	0,0741	0,0195	0,1019	0,0084	0,0278	100,0
0,333	0,3624	3,216	0,0753	0,0151	0,1004	0,0100	0,0251	98,8	0,333	0,3624	3,201	0,0764	0,0170	0,1019	0,0085	0,0255	100,0	0,333	0,3622	3,162	0,0763	0,0178	0,1017	0,0076	0,0254	100,0
0,250	0,3622	3,156	0,0813	0,0122	0,1017	0,0081	0,0203	100,0	0,250	0,3620	3,094	0,0811	0,0135	0,1013	0,0068	0,0203	100,0	0,250	0,3619	3,063	0,0810	0,0142	0,1012	0,0061	0,0202	100,0
0,200	0,3619	3,074	0,0844	0,0101	0,1012	0,0068	0,0169	100,0	0,200	0,3618	3,022	0,0842	0,0112	0,1010	0,0056	0,0168	100,0	0,200	0,3617	2,997	0,0841	0,0118	0,1009	0,0050	0,0168	100,0
0,167	0,3617	3,016	0,0865	0,0087	0,1010	0,0058	0,0144	100,0	0,167	0,3616	2,972	0,0863	0,0096	0,1007	0,0048	0,0144	100,0	0,167	0,3615	2,950	0,0863	0,0101	0,1006	0,0043	0,0144	100,0
0,143	0,3616	2,973	0,0881	0,0076	0,1007	0,0050	0,0126	100,0	0,143	0,3614	2,934	0,0880	0,0084	0,1005	0,0042	0,0126	100,0	0,143	0,3614	2,915	0,0879	0,0088	0,1005	0,0038	0,0126	100,0
	1s - 6,6 barA, 2s 10 barA 61=0,376										19	- 6,6 barA	2s 10 barA	б1=0,333						19	- 6,6 barA,	2s 10 bar	61=0,250			
б2	η_{CRN2s}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						t9	б2	η_{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	<i>m</i> _{x1}	\dot{m}_{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3621	3,125	0,0569	0,0276	0,0949	0,0104	0,0380	94,7	0,667	0,3624	3,209	0,0589	0,0295	0,0982	0,0098	0,0393	97,0	0,667	0,3626	3,275	0,0614	0,0327	0,1023	0,0082	0,0409	100,0
0,500	0,3626	3,270	0,0679	0,0247	0,1018	0,0093	0,0339	99,7	0,500	0,3626	3,251	0,0681	0,0255	0,1021	0,0085	0,0340	100,0	0,500	0,3623	3,173	0,0678	0,0271	0,1017	0,0068	0,0339	100,0
0,429	0,3625	3,225	0,0714	0,0223	0,1020	0,0084	0,0306	100,0	0,429	0,3623	3,192	0,0713	0,0229	0,1018	0,0076	0,0306	100,0	0,429	0,3621	3,122	0,0710	0,0244	0,1015	0,0061	0,0305	100,0
0,376	0,3623	3,174	0,0739	0,0202	0,1017	0,0076	0,0278	100,0	0,376	0,3622	3,145	0,0738	0,0208	0,1016	0,0069	0,0278	100,0	0,376	0,3620	3,081	0,0736	0,0221	0,1013	0,0055	0,0277	100,0
0,333	0,3621	3,131	0,0761	0,0184	0,1015	0,0069	0,0254	100,0	0,333	0,3620	3,104	0,0760	0,0190	0,1014	0,0063	0,0253	100,0	0,333	0,3618	3,046	0,0758	0,0202	0,1011	0,0051	0,0253	100,0
0,250	0,3618	3,038	0,0809	0,0147	0,1011	0,0055	0,0202	100,0	0,250	0,3617	3,016	0,0808	0,0151	0,1010	0,0050	0,0202	100,0	0,250	0,3616	2,970	0,0806	0,0161	0,1007	0,0040	0,0201	100,0
0,200	0,3616	2,976	0,0840	0,0122	0,1008	0,0046	0,0168	100,0	0,200	0,3615	2,958	0,0839	0,0126	0,1007	0,0042	0,0168	100,0	0,200	0,3614	2,920	0,0837	0,0134	0,1005	0,0033	0,0167	100,0
0,167	0,3614	2,932	0,0862	0,0104	0,1005	0,0039	0,0144	100,0	0,167	0,3614	2,917	0,0861	0,0108	0,1005	0,0036	0,0144	100,0	0,167	0,3613	2,885	0,0860	0,0115	0,1003	0,0029	0,0143	100,0
0,143	0,3613	2,900	0,0878	0,0091	0,1004	0,0034	0,0125	100,0	0,143	0,3613	2,886	0,0878	0,0094	0,1003	0,0031	0,0125	100,0	0,143	0,3612	2,858	0,0876	0,0100	0,1002	0,0025	0,0125	100,0
		1s	- 6,6 barA,	2s 10 barA	А б1=0,200						19	- 6,6 barA	, 2s 10 barA	61=0,167						19	- 6,6 barA,	2s 10 barA	а б1=0,143			
б2	η _{CRN2s}	ε _{crn2s}	m̂2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	<i>m</i> ₁₀	<i>m</i> _{x1}	<i>m</i> _{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	<i>m</i> ₂	\dot{m}_3	<i>m</i> ₁₀	\dot{m}_{x1}	\dot{m}_{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3624	3,212	0,0612	0,0340	0,1019	0,0068	0,0408	100,0	0,667	0,3623	3,167	0,0610	0,0349	0,1017	0,0058	0,0407	100,0	0,667	0,3621	3,134	0,0609	0,0355	0,1016	0,0051	0,0406	100,0
0,500	0,3621	3,121	0,0677	0,0282	0,1015	0,0056	0,0338	100,0	0,500	0,3620	3,084	0,0675	0,0289	0,1013	0,0048	0,0338	100,0	0,500	0,3619	3,056	0,0674	0,0295	0,1012	0,0042	0,0337	100,0
0,429	0,3619	3,075	0,0709	0,0253	0,1013	0,0051	0,0304	100,0	0,429	0,3618	3,042	0,0707	0,0260	0,1011	0,0043	0,0304	100,0	0,429	0,3617	3,017	0,0707	0,0265	0,1010	0,0038	0,0303	100,0
0,376	0,3618	3,039	0,0735	0,0230	0,1011	0,0046	0,0276	100,0	0,376	0,3617	3,008	0,0734	0,0236	0,1009	0,0039	0,0276	100,0	0,376	0,3616	2,986	0,0733	0,0241	0,1008	0,0034	0,0275	100,0
0,333	0,3617	3,007	0,0757	0,0210	0,1009	0,0042	0,0252	100,0	0,333	0,3616	2,980	0,0756	0,0216	0,1008	0,0036	0,0252	100,0	0,333	0,3615	2,959	0,0755	0,0220	0,1007	0,0031	0,0252	100,0
0,250	0,3615	2,939	0,0805	0,0168	0,1006	0,0034	0,0201	100,0	0,250	0,3614	2,918	0,0804	0,0172	0,1005	0,0029	0,0201	100,0	0,250	0,3613	2,901	0,0803	0,0176	0,1004	0,0025	0,0201	100,0
0,200	0,3613	2,895	0,0836	0,0139	0,1004	0,0028	0,0167	100,0	0,200	0,3612	2,877	0,0836	0,0143	0,1003	0,0024	0,0167	100,0	0,200	0,3612	2,863	0,0835	0,0146	0,1002	0,0021	0,0167	100,0
0,167	0,3612	2,863	0,0859	0,0119	0,1002	0,0024	0,0143	100,0	0,167	0,3611	2,847	0,0858	0,0123	0,1001	0,0020	0,0143	100,0	0,167	0,3611	2,836	0,0858	0,0125	0,1001	0,0018	0,0143	100,0
0,143	0,3611	2,839	0,0876	0,0104	0,1001	0,0021	0,0125	100,0	0,143	0,3611	2,826	0,0875	0,0107	0,1000	0,0018	0,0125	100,0	0,143	0,3610	2,815	0,0875	0,0109	0,1000	0,0016	0,0125	100,0

Tab. Z2.25 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 10 barA w zależności od stopnia eżekcji 61 dla temperatur kondensatu 100 °C

												110 °C														
		1s	- 6,6 barA,	2s 10 bar	б1=0,667						1	Ls - 6,6 bar	A, 2s 10 ba	А б1=0,5						19	- 6,6 barA,	2s 10 bar	б1=0,429			
б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t9	б2	η_{CRN2s}	ε _{CRN2s}	m ₂	<i>m</i> 3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t9
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3607	2,736	0,0477	0,0191	0,0796	0,0127	0,0318	83,9	0,667	0,3614	2,928	0,0523	0,0232	0,0871	0,0116	0,0349	89,2	0,667	0,3618	3,034	0,0548	0,0255	0,0913	0,0110	0,0365	92,1
0,500	0,3614	2,926	0,0586	0,0176	0,0878	0,0117	0,0293	89,8	0,500	0,3620	3,100	0,0632	0,0211	0,0949	0,0105	0,0316	94,7	0,500	0,3624	3,197	0,0658	0,0230	0,0988	0,0099	0,0329	97,5
0,429	0,3618	3,034	0,0647	0,0167	0,0925	0,0111	0,0278	93,1	0,429	0,3624	3,199	0,0694	0,0199	0,0992	0,0099	0,0298	97,9	0,429	0,3627	3,292	0,0721	0,0216	0,1030	0,0093	0,0309	100,5
0,376	0,3621	3,128	0,0702	0,0158	0,0966	0,0106	0,0264	96,1	0,376	0,3627	3,286	0,0749	0,0188	0,1031	0,0094	0,0282	100,7	0,376	0,3630	3,376	0,0776	0,0204	0,1067	0,0088	0,0292	103,2
0,333	0,3624	3,216	0,0753	0,0151	0,1004	0,0100	0,0251	98,8	0,333	0,3630	3,367	0,0800	0,0178	0,1067	0,0089	0,0267	103,2	0,333	0,3633	3,452	0,0826	0,0193	0,1101	0,0083	0,0275	105,7
0,250	0,3632	3,422	0,0875	0,0131	0,1094	0,0088	0,0219	105,2	0,250	0,3636	3,559	0,0921	0,0153	0,1151	0,0077	0,0230	109,3	0,250	0,3636	3,562	0,0928	0,0162	0,1161	0,0070	0,0232	110,0
0,200	0,3637	3,572	0,0967	0,0116	0,1160	0,0077	0,0193	109,9	0,200	0,3635	3,515	0,0965	0,0129	0,1158	0,0064	0,0193	110,0	0,200	0,3634	3,485	0,0964	0,0135	0,1157	0,0058	0,0193	110,0
0,167	0,3635	3,507	0,0992	0,0099	0,1158	0,0066	0,0165	110,0	0,167	0,3633	3,456	0,0990	0,0110	0,1155	0,0055	0,0165	110,0	0,167	0,3632	3,431	0,0989	0,0115	0,1154	0,0050	0,0165	110,0
0,143	0,3633	3,457	0,1011	0,0087	0,1155	0,0058	0,0144	110,0	0,143	0,3631	3,412	0,1009	0,0096	0,1153	0,0048	0,0144	110,0	0,143	0,3630	3,390	0,1008	0,0101	0,1152	0,0043	0,0144	110,0
		1s	- 6,6 barA,	2s 10 bar/	А б1=0,376						19	- 6,6 barA	2s 10 bar/	б1=0,333						19	- 6,6 barA,	2s 10 bar	61=0,250			
б2	η _{CRN2s}	$\hat{m}_{CRN2s} = \frac{\hat{m}_2}{[c_1]} \frac{\hat{m}_3}{[c_2]} \frac{\hat{m}_3}{[c_2]} \frac{\hat{m}_{10}}{[c_2]} \frac{\hat{m}_{\chi 1}}{[c_2]} \frac{\hat{m}_{\chi 2}}{[c_2]}$						t9	б2	η_{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3621	3,125	0,0569	0,0276	0,0949	0,0104	0,0380	94,7	0,667	0,3624	3,209	0,0589	0,0295	0,0982	0,0098	0,0393	97,0	0,667	0,3631	3,403	0,0635	0,0339	0,1059	0,0085	0,0424	102,4
0,500	0,3626	3,270	0,0679	0,0247	0,1018	0,0093	0,0339	99,7	0,500	0,3629	3,361	0,0702	0,0263	0,1053	0,0088	0,0351	102,1	0,500	0,3636	3,544	0,0750	0,0300	0,1125	0,0075	0,0375	107,2
0,429	0,3630	3,374	0,0744	0,0232	0,1063	0,0087	0,0319	102,9	0,429	0,3633	3,450	0,0765	0,0246	0,1093	0,0082	0,0328	105,0	0,429	0,3639	3,625	0,0813	0,0279	0,1162	0,0070	0,0349	109,9
0,376	0,3633	3,455	0,0799	0,0218	0,1099	0,0082	0,0300	105,5	0,376	0,3635	3,528	0,0820	0,0231	0,1128	0,0077	0,0308	107,5	0,376	0,3637	3,583	0,0844	0,0254	0,1162	0,0063	0,0317	110,0
0,333	0,3635	3,530	0,0849	0,0206	0,1132	0,0077	0,0283	107,9	0,333	0,3638	3,600	0,0870	0,0218	0,1160	0,0073	0,0290	109,8	0,333	0,3636	3,542	0,0870	0,0232	0,1160	0,0058	0,0290	110,0
0,250	0,3635	3,533	0,0927	0,0168	0,1159	0,0063	0,0232	110,0	0,250	0,3635	3,508	0,0926	0,0174	0,1158	0,0058	0,0232	110,0	0,250	0,3633	3,454	0,0924	0,0185	0,1155	0,0046	0,0231	110,0
0,200	0,3633	3,461	0,0963	0,0140	0,1156	0,0053	0,0193	110,0	0,200	0,3632	3,440	0,0962	0,0144	0,1155	0,0048	0,0192	110,0	0,200	0,3631	3,396	0,0960	0,0154	0,1152	0,0038	0,0192	110,0
0,167	0,3631	3,410	0,0988	0,0120	0,1153	0,0045	0,0165	110,0	0,167	0,3631	3,393	0,0988	0,0123	0,1152	0,0041	0,0165	110,0	0,167	0,3629	3,355	0,0986	0,0131	0,1150	0,0033	0,0164	110,0
0,143	0,3630	3,372	0,1007	0,0105	0,1151	0,0039	0,0144	110,0	0,143	0,3629	3,357	0,1007	0,0108	0,1150	0,0036	0,0144	110,0	0,143	0,3628	3,324	0,1005	0,0115	0,1149	0,0029	0,0144	110,0
		1s	- 6,6 barA,	, 2s 10 barA	А б1=0,200						19	- 6,6 barA	, 2s 10 barA	А б1=0,167						15	- 6,6 barA,	2s 10 barA	А б1=0,143			
б2	η _{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	m ₂	m ₃	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t ₉	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	<i>m</i> ₁₀	\dot{m}_{x1}	\dot{m}_{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3636	3,542	0,0669	0,0371	0,1114	0,0074	0,0446	106,3	0,667	0,3641	3,684	0,0700	0,0400	0,1167	0,0067	0,0467	110,0	0,667	0,3639	3,645	0,0699	0,0408	0,1165	0,0058	0,0466	110,0
0,500	0,3639	3,629	0,0776	0,0323	0,1164	0,0065	0,0388	110,0	0,500	0,3637	3,586	0,0775	0,0332	0,1162	0,0055	0,0387	110,0	0,500	0,3636	3,554	0,0774	0,0338	0,1160	0,0048	0,0387	110,0
0,429	0,3637	3,576	0,0813	0,0291	0,1161	0,0058	0,0349	110,0	0,429	0,3636	3,538	0,0811	0,0298	0,1159	0,0050	0,0348	110,0	0,429	0,3635	3,509	0,0810	0,0304	0,1158	0,0043	0,0348	110,0
0,376	0,3635	3,534	0,0843	0,0264	0,1159	0,0053	0,0317	110,0	0,376	0,3634	3,499	0,0841	0,0271	0,1158	0,0045	0,0316	110,0	0,376	0,3633	3,472	0,0840	0,0276	0,1156	0,0039	0,0316	110,0
0,333	0,3634	3,497	0,0868	0,0241	0,1157	0,0048	0,0289	110,0	0,333	0,3633	3,465	0,0867	0,0248	0,1156	0,0041	0,0289	110,0	0,333	0,3632	3,441	0,0866	0,0253	0,1155	0,0036	0,0289	110,0
0,250	0,3631	3,418	0,0923	0,0192	0,1154	0,0038	0,0231	110,0	0,250	0,3631	3,393	0,0922	0,0198	0,1152	0,0033	0,0230	110,0	0,250	0,3630	3,374	0,0921	0,0201	0,1151	0,0029	0,0230	110,0
0,200	0,3630	3,366	0,0959	0,0160	0,1151	0,0032	0,0192	110,0	0,200	0,3629	3,345	0,0958	0,0164	0,1150	0,0027	0,0192	110,0	0,200	0,3628	3,330	0,0958	0,0168	0,1149	0,0024	0,0192	110,0
0,167	0,3628	3,329	0,0985	0,0137	0,1149	0,0027	0,0164	110,0	0,167	0,3628	3,311	0,0984	0,0141	0,1148	0,0023	0,0164	110,0	0,167	0,3627	3,298	0,0984	0,0143	0,1148	0,0020	0,0164	110,0
0,143	0,3627	3,302	0,1004	0,0120	0,1148	0,0024	0,0143	110,0	0,143	0,3627	3,286	0,1004	0,0123	0,1147	0,0020	0,0143	110,0	0,143	0,3626	3,274	0,1003	0,0125	0,1146	0,0018	0,0143	110,0

Tab. Z2.26 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 10 barA w zależności od stopnia eżekcji 61 dla temperatur kondensatu 110 °C

													120 °C													
		1s	- 6,6 barA,	2s 10 barA	б1=0,667						. 1	Ls - 6,6 bar	A, 2s 10 ba	rA б1=0,5						1s	- 6,6 barA,	2s 10 bar	б1=0,429			
б2	η _{CRN2s}	E _{CRN2s}	<i>ṁ</i> ₂	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9	б2	η_{CRN2s}	ε _{CRN2s}	<i>m</i> 2	\dot{m}_3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η_{CRN2s}	E _{CRN2s}	m₂	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t9
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3607	2,736	0,0477	0,0191	0,0796	0,0127	0,0318	83,9	0,667	0,3614	2,928	0,0523	0,0232	0,0871	0,0116	0,0349	89,2	0,667	0,3618	3,034	0,0548	0,0255	0,0913	0,0110	0,0365	92,1
0,500	0,3614	2,926	0,0586	0,0176	0,0878	0,0117	0,0293	89,8	0,500	0,3620	3,100	0,0632	0,0211	0,0949	0,0105	0,0316	94,7	0,500	0,3624	3,197	0,0658	0,0230	0,0988	0,0099	0,0329	97,5
0,429	0,3618	3,034	0,0647	0,0167	0,0925	0,0111	0,0278	93,1	0,429	0,3624	3,199	0,0694	0,0199	0,0992	0,0099	0,0298	97,9	0,429	0,3627	3,292	0,0721	0,0216	0,1030	0,0093	0,0309	100,5
0,376	0,3621	3,128	0,0702	0,0158	0,0966	0,0106	0,0264	96,1	0,376	0,3627	3,286	0,0749	0,0188	0,1031	0,0094	0,0282	100,7	0,376	0,3630	3,376	0,0776	0,0204	0,1067	0,0088	0,0292	103,2
0,333	0,3624	3,216	0,0753	0,0151	0,1004	0,0100	0,0251	98,8	0,333	0,3630	3,367	0,0800	0,0178	0,1067	0,0089	0,0267	103,2	0,333	0,3633	3,452	0,0826	0,0193	0,1101	0,0083	0,0275	105,7
0,250	0,3632	3,422	0,0875	0,0131	0,1094	0,0088	0,0219	105,2	0,250	0,3636	3,559	0,0921	0,0153	0,1151	0,0077	0,0230	109,3	0,250	0,3639	3,638	0,0946	0,0166	0,1183	0,0071	0,0237	111,5
0,200	0,3637	3,572	0,0967	0,0116	0,1160	0,0077	0,0193	109,9	0,200	0,3641	3,704	0,1012	0,0135	0,1214	0,0067	0,0202	113,8	0,200	0,3644	3,778	0,1036	0,0145	0,1244	0,0062	0,0207	115,9
0,167	0,3641	3,684	0,1037	0,0104	0,1210	0,0069	0,0173	113,5	0,167	0,3645	3,814	0,1082	0,0120	0,1262	0,0060	0,0180	117,2	0,167	0,3648	3,886	0,1106	0,0129	0,1290	0,0055	0,0184	119,2
0,143	0,3644	3,773	0,1093	0,0094	0,1250	0,0063	0,0156	116,4	0,143	0,3648	3,900	0,1137	0,0108	0,1300	0,0054	0,0162	119,9	0,143	0,3648	3,880	0,1138	0,0114	0,1300	0,0049	0,0163	120,0
	1s - 6,6 barA, 2s 10 barA 61=0,376									0	15	- 6,6 barA	2s 10 bar	б1=0,333					1	1s	- 6,6 barA,	2s 10 barA	б1=0,250			
б2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						t9	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	<i>m</i> ₃	<i>m</i> ₁₀	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	m ₂	\dot{m}_3	<i>m</i> ₁₀	<i>m</i> _{x1}	\dot{m}_{x2}	t ₉	
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3621	3,125	0,0569	0,0276	0,0949	0,0104	0,0380	94,7	0,667	0,3624	3,209	0,0589	0,0295	0,0982	0,0098	0,0393	97,0	0,667	0,3631	3,403	0,0635	0,0339	0,1059	0,0085	0,0424	102,4
0,500	0,3626	3,270	0,0679	0,0247	0,1018	0,0093	0,0339	99,7	0,500	0,3629	3,361	0,0702	0,0263	0,1053	0,0088	0,0351	102,1	0,500	0,3636	3,544	0,0750	0,0300	0,1125	0,0075	0,0375	107,2
0,429	0,3630	3,374	0,0744	0,0232	0,1063	0,0087	0,0319	102,9	0,429	0,3633	3,450	0,0765	0,0246	0,1093	0,0082	0,0328	105,0	0,429	0,3639	3,625	0,0813	0,0279	0,1162	0,0070	0,0349	109,9
0,376	0,3633	3,455	0,0799	0,0218	0,1099	0,0082	0,0300	105,5	0,376	0,3635	3,528	0,0820	0,0231	0,1128	0,0077	0,0308	107,5	0,376	0,3641	3,699	0,0869	0,0261	0,1195	0,0065	0,0327	112,3
0,333	0,3635	3,530	0,0849	0,0206	0,1132	0,0077	0,0283	107,9	0,333	0,3638	3,603	0,0871	0,0218	0,1161	0,0073	0,0290	109,9	0,333	0,3644	3,766	0,0919	0,0245	0,1226	0,0061	0,0306	114,4
0,250	0,3642	3,709	0,0969	0,0176	0,1211	0,0066	0,0242	113,5	0,250	0,3644	3,775	0,0989	0,0186	0,1237	0,0062	0,0247	115,3	0,250	0,3649	3,929	0,1037	0,0207	0,1297	0,0052	0,0259	119,5
0,200	0,3646	3,844	0,1058	0,0154	0,1270	0,0058	0,0212	117,7	0,200	0,3649	3,906	0,1078	0,0162	0,1294	0,0054	0,0216	119,4	0,200	0,3648	3,887	0,1084	0,0173	0,1300	0,0043	0,0217	120,0
0,167	0,3648	3,903	0,1115	0,0135	0,1301	0,0051	0,0186	120,0	0,167	0,3648	3,883	0,1114	0,0139	0,1300	0,0046	0,0186	120,0	0,167	0,3646	3,839	0,1113	0,0148	0,1298	0,0037	0,0185	120,0
0,143	0,3647	3,860	0,1137	0,0118	0,1299	0,0044	0,0162	120,0	0,143	0,3646	3,842	0,1136	0,0122	0,1298	0,0041	0,0162	120,0	0,143	0,3645	3,804	0,1134	0,0130	0,1296	0,0032	0,0162	120,0
		1s	- 6,6 barA,	2s 10 barA	А б1=0,200						19	- 6,6 barA	2s 10 bar/	б1=0,167						1s	- 6,6 barA,	2s 10 bar	61=0,143			
б2	η _{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3636	3,542	0,0669	0,0371	0,1114	0,0074	0,0446	106,3	0,667	0,3641	3,684	0,0700	0,0400	0,1167	0,0067	0,0467	110,0	0,667	0,3642	3,732	0,0714	0,0416	0,1190	0,0059	0,0476	111,7
0,500	0,3640	3,676	0,0785	0,0327	0,1178	0,0065	0,0393	110,9	0,500	0,3644	3,776	0,0811	0,0348	0,1217	0,0058	0,0406	113,7	0,500	0,3647	3,858	0,0833	0,0364	0,1249	0,0052	0,0416	116,0
0,429	0,3643	3,754	0,0849	0,0304	0,1213	0,0061	0,0364	113,5	0,429	0,3647	3,853	0,0876	0,0322	0,1252	0,0054	0,0376	116,2	0,429	0,3649	3,931	0,0897	0,0337	0,1282	0,0048	0,0385	118,3
0,376	0,3646	3,823	0,0904	0,0283	0,1244	0,0057	0,0340	115,7	0,376	0,3649	3,921	0,0932	0,0300	0,1282	0,0050	0,0350	118,4	0,376	0,3651	3,974	0,0948	0,0312	0,1305	0,0045	0,0356	120,0
0,333	0,3648	3,888	0,0955	0,0265	0,1273	0,0053	0,0318	117,8	0,333	0,3651	3,966	0,0978	0,0280	0,1304	0,0047	0,0326	120,0	0,333	0,3650	3,938	0,0977	0,0285	0,1303	0,0041	0,0326	120,0
0,250	0,3649	3,913	0,1041	0,0217	0,1302	0,0043	0,0260	120,0	0,250	0,3648	3,883	0,1040	0,0223	0,1300	0,0037	0,0260	120,0	0,250	0,3647	3,862	0,1039	0,0227	0,1299	0,0032	0,0260	120,0
0,200	0,3647	3,853	0,1082	0,0180	0,1299	0,0036	0,0216	120,0	0,200	0,3646	3,829	0,1081	0,0185	0,1298	0,0031	0,0216	120,0	0,200	0,3645	3,811	0,1081	0,0189	0,1297	0,0027	0,0216	120,0
0,167	0,3645	3,811	0,1112	0,0154	0,1297	0,0031	0,0185	120,0	0,167	0,3644	3,790	0,1111	0,0159	0,1296	0,0026	0,0185	120,0	0,167	0,3644	3,775	0,1110	0,0162	0,1295	0,0023	0,0185	120,0
0,143	0,3644	3,779	0,1133	0,0135	0,1295	0,0027	0,0162	120,0	0,143	0,3643	3,761	0,1133	0,0139	0,1294	0,0023	0,0162	120,0	0,143	0,3643	3,747	0,1132	0,0141	0,1294	0,0020	0,0162	120,0

Tab. Z2.27 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 10 barA w zależności od stopnia eżekcji 61 dla temperatur kondensatu 120 °C

													130 °C													
		1s	- 6,6 barA,	2s 10 bar	б1=0,667						1	Ls - 6,6 bar	A, 2s 10 ba	А б1=0,5						1s	- 6,6 barA,	2s 10 bar	б1=0,429			
б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t9	б2	η_{CRN2s}	ε _{CRN2s}	m ₂	<i>m</i> 3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3607	2,736	0,0477	0,0191	0,0796	0,0127	0,0318	83,9	0,667	0,3614	2,928	0,0523	0,0232	0,0871	0,0116	0,0349	89,2	0,667	0,3618	3,034	0,0548	0,0255	0,0913	0,0110	0,0365	92,1
0,500	0,3614	2,926	0,0586	0,0176	0,0878	0,0117	0,0293	89,8	0,500	0,3620	3,100	0,0632	0,0211	0,0949	0,0105	0,0316	94,7	0,500	0,3624	3,197	0,0658	0,0230	0,0988	0,0099	0,0329	97,5
0,429	0,3618	3,034	0,0647	0,0167	0,0925	0,0111	0,0278	93,1	0,429	0,3624	3,199	0,0694	0,0199	0,0992	0,0099	0,0298	97,9	0,429	0,3627	3,292	0,0721	0,0216	0,1030	0,0093	0,0309	100,5
0,376	0,3621	3,128	0,0702	0,0158	0,0966	0,0106	0,0264	96,1	0,376	0,3627	3,286	0,0749	0,0188	0,1031	0,0094	0,0282	100,7	0,376	0,3630	3,376	0,0776	0,0204	0,1067	0,0088	0,0292	103,2
0,333	0,3624	3,216	0,0753	0,0151	0,1004	0,0100	0,0251	98,8	0,333	0,3630	3,367	0,0800	0,0178	0,1067	0,0089	0,0267	103,2	0,333	0,3633	3,452	0,0826	0,0193	0,1101	0,0083	0,0275	105,7
0,250	0,3632	3,422	0,0875	0,0131	0,1094	0,0088	0,0219	105,2	0,250	0,3636	3,559	0,0921	0,0153	0,1151	0,0077	0,0230	109,3	0,250	0,3639	3,638	0,0946	0,0166	0,1183	0,0071	0,0237	111,5
0,200	0,3637	3,572	0,0967	0,0116	0,1160	0,0077	0,0193	109,9	0,200	0,3641	3,704	0,1012	0,0135	0,1214	0,0067	0,0202	113,8	0,200	0,3644	3,778	0,1036	0,0145	0,1244	0,0062	0,0207	115,9
0,167	0,3641	3,684	0,1037	0,0104	0,1210	0,0069	0,0173	113,5	0,167	0,3645	3,814	0,1082	0,0120	0,1262	0,0060	0,0180	117,2	0,167	0,3648	3,886	0,1106	0,0129	0,1290	0,0055	0,0184	119,2
0,143	0,3644	3,773	0,1093	0,0094	0,1250	0,0063	0,0156	116,4	0,143	0,3648	3,900	0,1137	0,0108	0,1300	0,0054	0,0162	119,9	0,143	0,3651	3,970	0,1161	0,0116	0,1327	0,0050	0,0166	121,8
	1s - 6,6 barA, 2s 10 barA 61=0,376										19	- 6,6 barA	, 2s 10 barA	А б1=0,333						1s	- 6,6 barA,	2s 10 barA	А б1=0,250			
б2	η _{CRN2s}	$\frac{1}{10000000000000000000000000000000000$						t9	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	<i>m</i> ₁₀	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	\dot{m}_3	<i>m</i> ₁₀	<i>m</i> _{x1}	\dot{m}_{x2}	t9
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3621	3,125	0,0569	0,0276	0,0949	0,0104	0,0380	94,7	0,667	0,3624	3,209	0,0589	0,0295	0,0982	0,0098	0,0393	97,0	0,667	0,3631	3,403	0,0635	0,0339	0,1059	0,0085	0,0424	102,4
0,500	0,3626	3,270	0,0679	0,0247	0,1018	0,0093	0,0339	99,7	0,500	0,3629	3,361	0,0702	0,0263	0,1053	0,0088	0,0351	102,1	0,500	0,3636	3,544	0,0750	0,0300	0,1125	0,0075	0,0375	107,2
0,429	0,3630	3,374	0,0744	0,0232	0,1063	0,0087	0,0319	102,9	0,429	0,3633	3,450	0,0765	0,0246	0,1093	0,0082	0,0328	105,0	0,429	0,3639	3,625	0,0813	0,0279	0,1162	0,0070	0,0349	109,9
0,376	0,3633	3,455	0,0799	0,0218	0,1099	0,0082	0,0300	105,5	0,376	0,3635	3,528	0,0820	0,0231	0,1128	0,0077	0,0308	107,5	0,376	0,3641	3,699	0,0869	0,0261	0,1195	0,0065	0,0327	112,3
0,333	0,3635	3,530	0,0849	0,0206	0,1132	0,0077	0,0283	107,9	0,333	0,3638	3,603	0,0871	0,0218	0,1161	0,0073	0,0290	109,9	0,333	0,3644	3,766	0,0919	0,0245	0,1226	0,0061	0,0306	114,4
0,250	0,3642	3,709	0,0969	0,0176	0,1211	0,0066	0,0242	113,5	0,250	0,3644	3,775	0,0989	0,0186	0,1237	0,0062	0,0247	115,3	0,250	0,3649	3,929	0,1037	0,0207	0,1297	0,0052	0,0259	119,5
0,200	0,3646	3,844	0,1058	0,0154	0,1270	0,0058	0,0212	117,7	0,200	0,3649	3,906	0,1078	0,0162	0,1294	0,0054	0,0216	119,4	0,200	0,3654	4,052	0,1125	0,0180	0,1349	0,0045	0,0225	123,3
0,167	0,3650	3,949	0,1127	0,0137	0,1315	0,0051	0,0188	120,9	0,167	0,3652	4,008	0,1146	0,0143	0,1337	0,0048	0,0191	122,5	0,167	0,3657	4,147	0,1191	0,0159	0,1390	0,0040	0,0199	126,2
0,143	0,3653	4,033	0,1182	0,0123	0,1351	0,0046	0,0169	123,5	0,143	0,3655	4,090	0,1201	0,0129	0,1372	0,0043	0,0172	125,0	0,143	0,3660	4,225	0,1245	0,0142	0,1422	0,0036	0,0178	128,5
		1s	- 6,6 barA,	, 2s 10 bar <i>l</i>	А б1=0,200						19	- 6,6 barA	, 2s 10 barA	А б1=0,167						1s	- 6,6 barA,	2s 10 barA	А б1=0,143			
б2	η _{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	m ₂	m ₃	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	<i>m</i> ₁₀	\dot{m}_{x1}	\dot{m}_{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3636	3,542	0,0669	0,0371	0,1114	0,0074	0,0446	106,3	0,667	0,3641	3,684	0,0700	0,0400	0,1167	0,0067	0,0467	110,0	0,667	0,3642	3,732	0,0714	0,0416	0,1190	0,0059	0,0476	111,7
0,500	0,3640	3,676	0,0785	0,0327	0,1178	0,0065	0,0393	110,9	0,500	0,3644	3,776	0,0811	0,0348	0,1217	0,0058	0,0406	113,7	0,500	0,3647	3,858	0,0833	0,0364	0,1249	0,0052	0,0416	116,0
0,429	0,3643	3,754	0,0849	0,0304	0,1213	0,0061	0,0364	113,5	0,429	0,3647	3,853	0,0876	0,0322	0,1252	0,0054	0,0376	116,2	0,429	0,3649	3,931	0,0897	0,0337	0,1282	0,0048	0,0385	118,3
0,376	0,3646	3,823	0,0904	0,0283	0,1244	0,0057	0,0340	115,7	0,376	0,3649	3,921	0,0932	0,0300	0,1282	0,0050	0,0350	118,4	0,376	0,3652	3,996	0,0953	0,0313	0,1311	0,0045	0,0358	120,4
0,333	0,3648	3,888	0,0955	0,0265	0,1273	0,0053	0,0318	117,8	0,333	0,3651	3,983	0,0982	0,0281	0,1309	0,0047	0,0327	120,3	0,333	0,3654	4,057	0,1003	0,0293	0,1338	0,0042	0,0334	122,3
0,250	0,3653	4,043	0,1072	0,0223	0,1340	0,0045	0,0268	122,6	0,250	0,3657	4,132	0,1099	0,0236	0,1374	0,0039	0,0275	125,0	0,250	0,3659	4,202	0,1120	0,0245	0,1400	0,0035	0,0280	126,8
0,200	0,3657	4,160	0,1158	0,0193	0,1390	0,0039	0,0232	126,1	0,200	0,3660	4,236	0,1182	0,0203	0,1419	0,0034	0,0236	128,2	0,200	0,3663	4,308	0,1204	0,0211	0,1445	0,0030	0,0241	130,0
0,167	0,3661	4,251	0,1224	0,0170	0,1428	0,0034	0,0204	128,9	0,167	0,3662	4,284	0,1238	0,0177	0,1444	0,0029	0,0206	130,0	0,167	0,3661	4,267	0,1237	0,0180	0,1443	0,0026	0,0206	130,0
0,143	0,3661	4,272	0,1263	0,0150	0,1443	0,0030	0,0180	130,0	0,143	0,3661	4,251	0,1262	0,0155	0,1442	0,0026	0,0180	130,0	0,143	0,3660	4,236	0,1261	0,0158	0,1442	0,0023	0,0180	130,0

Tab. Z2.28 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 10 barA w zależności od stopnia eżekcji 61 dla temperatur kondensatu 130 °C

												140														
		1s	- 6,6 barA,	2s 10 barA	б1=0,667						1	Ls - 6,6 bar	A, 2s 10 ba	А б1=0,5						1s	- 6,6 barA,	2s 10 bar	б1=0,429			
б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t9	б2	η _{CRN2s}	ε _{CRN2s}	<i>m</i> 2	<i>m</i> 3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η_{CRN2s}	E _{CRN2s}	m ₂	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3607	2,736	0,0477	0,0191	0,0796	0,0127	0,0318	83,9	0,667	0,3614	2,928	0,0523	0,0232	0,0871	0,0116	0,0349	89,2	0,667	0,3618	3,034	0,0548	0,0255	0,0913	0,0110	0,0365	92,1
0,500	0,3614	2,926	0,0586	0,0176	0,0878	0,0117	0,0293	89,8	0,500	0,3620	3,100	0,0632	0,0211	0,0949	0,0105	0,0316	94,7	0,500	0,3624	3,197	0,0658	0,0230	0,0988	0,0099	0,0329	97,5
0,429	0,3618	3,034	0,0647	0,0167	0,0925	0,0111	0,0278	93,1	0,429	0,3624	3,199	0,0694	0,0199	0,0992	0,0099	0,0298	97,9	0,429	0,3627	3,292	0,0721	0,0216	0,1030	0,0093	0,0309	100,5
0,376	0,3621	3,128	0,0702	0,0158	0,0966	0,0106	0,0264	96,1	0,376	0,3627	3,286	0,0749	0,0188	0,1031	0,0094	0,0282	100,7	0,376	0,3630	3,376	0,0776	0,0204	0,1067	0,0088	0,0292	103,2
0,333	0,3624	3,216	0,0753	0,0151	0,1004	0,0100	0,0251	98,8	0,333	0,3630	3,367	0,0800	0,0178	0,1067	0,0089	0,0267	103,2	0,333	0,3633	3,452	0,0826	0,0193	0,1101	0,0083	0,0275	105,7
0,250	0,3632	3,422	0,0875	0,0131	0,1094	0,0088	0,0219	105,2	0,250	0,3636	3,559	0,0921	0,0153	0,1151	0,0077	0,0230	109,3	0,250	0,3639	3,638	0,0946	0,0166	0,1183	0,0071	0,0237	111,5
0,200	0,3637	3,572	0,0967	0,0116	0,1160	0,0077	0,0193	109,9	0,200	0,3641	3,704	0,1012	0,0135	0,1214	0,0067	0,0202	113,8	0,200	0,3644	3,778	0,1036	0,0145	0,1244	0,0062	0,0207	115,9
0,167	0,3641	3,684	0,1037	0,0104	0,1210	0,0069	0,0173	113,5	0,167	0,3645	3,814	0,1082	0,0120	0,1262	0,0060	0,0180	117,2	0,167	0,3648	3,886	0,1106	0,0129	0,1290	0,0055	0,0184	119,2
0,143	0,3644	3,773	0,1093	0,0094	0,1250	0,0063	0,0156	116,4	0,143	0,3648	3,900	0,1137	0,0108	0,1300	0,0054	0,0162	119,9	0,143	0,3651	3,970	0,1161	0,0116	0,1327	0,0050	0,0166	121,8
		1s	- 6,6 barA,	2s 10 barA	А б1=0,376						19	- 6,6 barA	2s 10 bar/	б1=0,333						1s	- 6,6 barA,	2s 10 bar	61=0,250			
б2	η _{CRN2s}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						t9	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	<i>m</i> 3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t9	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	<i>m</i> _{x1}	\dot{m}_{x2}	t9
[-]	[-]	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	
0,667	[-] [%] [-] [-] [-] [-] 0,3621 3,125 0,0569 0,0276 0,		0,0949	0,0104	0,0380	94,7	0,667	0,3624	3,209	0,0589	0,0295	0,0982	0,0098	0,0393	97,0	0,667	0,3631	3,403	0,0635	0,0339	0,1059	0,0085	0,0424	102,4		
0,500	0,3626	3,270	0,0679	0,0247	0,1018	0,0093	0,0339	99,7	0,500	0,3629	3,361	0,0702	0,0263	0,1053	0,0088	0,0351	102,1	0,500	0,3636	3,544	0,0750	0,0300	0,1125	0,0075	0,0375	107,2
0,429	0,3630	3,374	0,0744	0,0232	0,1063	0,0087	0,0319	102,9	0,429	0,3633	3,450	0,0765	0,0246	0,1093	0,0082	0,0328	105,0	0,429	0,3639	3,625	0,0813	0,0279	0,1162	0,0070	0,0349	109,9
0,376	0,3633	3,455	0,0799	0,0218	0,1099	0,0082	0,0300	105,5	0,376	0,3635	3,528	0,0820	0,0231	0,1128	0,0077	0,0308	107,5	0,376	0,3641	3,699	0,0869	0,0261	0,1195	0,0065	0,0327	112,3
0,333	0,3635	3,530	0,0849	0,0206	0,1132	0,0077	0,0283	107,9	0,333	0,3638	3,603	0,0871	0,0218	0,1161	0,0073	0,0290	109,9	0,333	0,3644	3,766	0,0919	0,0245	0,1226	0,0061	0,0306	114,4
0,250	0,3642	3,709	0,0969	0,0176	0,1211	0,0066	0,0242	113,5	0,250	0,3644	3,775	0,0989	0,0186	0,1237	0,0062	0,0247	115,3	0,250	0,3649	3,929	0,1037	0,0207	0,1297	0,0052	0,0259	119,5
0,200	0,3646	3,844	0,1058	0,0154	0,1270	0,0058	0,0212	117,7	0,200	0,3649	3,906	0,1078	0,0162	0,1294	0,0054	0,0216	119,4	0,200	0,3654	4,052	0,1125	0,0180	0,1349	0,0045	0,0225	123,3
0,167	0,3650	3,949	0,1127	0,0137	0,1315	0,0051	0,0188	120,9	0,167	0,3652	4,008	0,1146	0,0143	0,1337	0,0048	0,0191	122,5	0,167	0,3657	4,147	0,1191	0,0159	0,1390	0,0040	0,0199	126,2
0,143	0,3653	4,033	0,1182	0,0123	0,1351	0,0046	0,0169	123,5	0,143	0,3655	4,090	0,1201	0,0129	0,1372	0,0043	0,0172	125,0	0,143	0,3660	4,225	0,1245	0,0142	0,1422	0,0036	0,0178	128,5
		1s	- 6,6 barA,	2s 10 barA	А б1=0,200						19	- 6,6 barA	, 2s 10 barA	б1=0,167						1s	- 6,6 barA,	2s 10 barA	61=0,143			
б2	η_{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	<i>m</i> _{x1}	<i>m</i> _{x2}	t ₉	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{10}	\dot{m}_{x1}	\dot{m}_{x2}	t ₉
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3636	3,542	0,0669	0,0371	0,1114	0,0074	0,0446	106,3	0,667	0,3640	3,649	0,0694	0,0397	0,1157	0,0066	0,0463	109,3	0,667	0,3642	3,732	0,0714	0,0416	0,1190	0,0059	0,0476	111,7
0,500	0,3640	3,676	0,0785	0,0327	0,1178	0,0065	0,0393	110,9	0,500	0,3644	3,776	0,0811	0,0348	0,1217	0,0058	0,0406	113,7	0,500	0,3647	3,858	0,0833	0,0364	0,1249	0,0052	0,0416	116,0
0,429	0,3643	3,754	0,0849	0,0304	0,1213	0,0061	0,0364	113,5	0,429	0,3647	3,853	0,0876	0,0322	0,1252	0,0054	0,0376	116,2	0,429	0,3649	3,931	0,0897	0,0337	0,1282	0,0048	0,0385	118,3
0,376	0,3646	3,823	0,0904	0,0283	0,1244	0,0057	0,0340	115,7	0,376	0,3649	3,921	0,0932	0,0300	0,1282	0,0050	0,0350	118,4	0,376	0,3652	3,996	0,0953	0,0313	0,1311	0,0045	0,0358	120,4
0,333	0,3648	3,888	0,0955	0,0265	0,1273	0,0053	0,0318	117,8	0,333	0,3651	3,983	0,0982	0,0281	0,1309	0,0047	0,0327	120,3	0,333	0,3654	4,057	0,1003	0,0293	0,1338	0,0042	0,0334	122,3
0,250	0,3653	4,043	0,1072	0,0223	0,1340	0,0045	0,0268	122,6	0,250	0,3657	4,132	0,1099	0,0236	0,1374	0,0039	0,0275	125,0	0,250	0,3659	4,202	0,1120	0,0245	0,1400	0,0035	0,0280	126,8
0,200	0,3657	4,160	0,1158	0,0193	0,1390	0,0039	0,0232	126,1	0,200	0,3660	4,236	0,1182	0,0203	0,1419	0,0034	0,0236	128,2	0,200	0,3663	4,312	0,1205	0,0211	0,1446	0,0030	0,0241	130,1
0,167	0,3661	4,251	0,1224	0,0170	0,1428	0,0034	0,0204	128,9	0,167	0,3664	4,333	0,1250	0,0179	0,1458	0,0030	0,0208	131,0	0,167	0,3666	4,397	0,1270	0,0185	0,1482	0,0026	0,0212	132,6
0,143	0,3663	4,325	0,1277	0,0152	0,1459	0,0030	0,0182	131,1	0,143	0,3666	4,403	0,1301	0,0159	0,1487	0,0027	0,0186	133,0	0,143	0,3668	4,465	0,1321	0,0165	0,1509	0,0024	0,0189	134,6

Tab. Z2.29 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 10 barA w zależności od stopnia eżekcji 61 dla temperatur kondensatu 140 °C

Zastosowanie dwustopniowego sprężania pary w układzie dwustopniowego podgrzewania wody zasilającej

Jak wynika ze wstępnej analizy przeprowadzonej w rozdziale 6.3.2. rozprawy, zastosowanie dodatkowego wymiennika ciepła zasilanego parą odlotową z inżektora pierwszego stopnia dodatnio wpływa na stopień regeneracji. Układy (Rys. Z2.27 a i b) rozbudowano o kolejny wymiennik ciepła (Rys. Z2.28 a i b), w którym woda zasilająca podgrzewana jest do temperatury nasycenia mieszaniny pary opuszczającej inżektor pierwszego stopnia obniżonej o 5 K. Zbiorcze wyniki obliczeń wyniki przeprowadzonych obliczeń przedstawiono w tabelach Z2.30-Z2.46.

Rys. Z2.28 Schemat cieplno-przepływowy układu z dwustopniowym podgrzewaniem wody zasilającej z wykorzystaniem dwustopniowego zespołu inżektorowego zasilanego a) z jednego zaczepu pary, b) z osobnych zaczepów pary

Obliczenia przeprowadzono zgodnie z algorytmem Z2.37 – Z2.47:

- 1. Wyznaczenie parametrów pary dla poszczególnych płaszczyznach kontrolnych;
- 2. Obliczenia strumienia masy pary grzewczej dla regeneracyjnego wymiennika ciepła drugiego stopnia:

$$\dot{m}_{14} = \frac{\dot{m}_{10}(i_{10} - i_9)}{i_{14} - i_{15}} \tag{Z2.38}$$

3. Obliczenia strumienia masy pary upustowej zasilającej inżektor parowy drugiego stopnia \dot{m}_2 oraz pary zassanej \dot{m}_{x2}

$$\dot{m}_2 = \frac{\dot{m}_{14}}{(1+\sigma)} \tag{Z2.39}$$

$$\dot{m}_{\chi 2} = \frac{\dot{m}_{14}}{(1 + \frac{1}{6r})} \tag{Z2.40}$$

4. Obliczenie strumienia masy pary grzewczej dla regeneracyjnego wymiennika ciepła pierwszego stopnia

$$\dot{m}_{11} = \frac{\dot{m}_8(\dot{i}_9 - \dot{i}_7) - \dot{m}_{15}(\dot{i}_{15} - \dot{i}_7)}{\dot{i}_{11} - \dot{i}_7}$$
(Z2.41)

5. Obliczenia sumarycznego strumienia masy opuszczający inżektor pierwszego stopnia

$$\dot{m}_{l1} = \dot{m}_{11} + \dot{m}_{x2} \tag{Z2.42}$$

6. Obliczenia strumienia masy pary upustowej zasilającej inżektor parowy pierwszego stopnia m₃oraz pary zassanej

$$\dot{m}_3 = \frac{\dot{m}_{l1}}{(1+6_1)} \tag{Z2.43}$$

$$\dot{m}_{x1} = \frac{\dot{m}_{l1}}{(1 + \frac{1}{6_1})} \tag{Z2.44}$$

7. Obliczenia sumarycznego strumienia skroplin opuszczającego podgrzewacz pierwszego stopnia

$$\dot{m}_{12} = \dot{m}_{13} = \dot{m}_{11} + \dot{m}_{15} \tag{Z2.45}$$

8. Wyznaczenie wielkości entalpii oraz temperatury (odczytane z tabeli termodynamicznej) zmieszanych skroplin pary grzewczej z kondensatem ze skraplacza głównego

$$i_8 = \frac{\dot{m}_{12}i_{12} + \dot{m}_7 i_7}{\dot{m}_7 + \dot{m}_{12}} \tag{Z2.46}$$

9. Wyznaczenie sprawności cieplnej obiegu regeneracyjnego

$$\eta_{CRN\,2s\,2w} = \frac{\dot{m}_1(\dot{i}_1 - \dot{i}_4) - \dot{m}_2(\dot{i}_2 - \dot{i}_4) - \dot{m}_3(\dot{i}_3 - \dot{i}_4)}{\dot{m}_{10}(\dot{i}_1 - \dot{i}_{10})} \tag{Z2.47}$$

														100	°C														
			s1 - 3,0 ba	arA; s2 - 6,	6 barA б	1=0,500							s1 - 3,0 b	arA; s2 - 6	,6 barA б	1=0,429							s1 - 3,0 bi	arA; s2 - 6	,6 barА б	1=0,367			
б2	η _{CRN2s}	ε _{CRN2s}	m ₂	m ₃	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η _{CRN2s}	E _{CRN2s}	m̂2	m̂ ₃	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3640	3,665	0,0206	0,0409	0,0343	0,0476	0,0204	0,0137	81,9	0,667	0,3645	3,795	0,0200	0,0457	0,0333	0,0521	0,0196	0,0133	84,2	0,667	0,3649	3,910	0,0194	0,0502	0,0323	0,0561	0,0189	0,0129	86,3
0,500	0,3649	3,933	0,0290	0,0406	0,0435	0,0463	0,0203	0,0145	87,3	0,500	0,3654	4,055	0,0281	0,0454	0,0421	0,0509	0,0195	0,0140	89,4	0,500	0,3658	4,165	0,0273	0,0499	0,0410	0,0550	0,0187	0,0137	91,3
0,429	0,3654	4,074	0,0340	0,0401	0,0486	0,0456	0,0201	0,0146	90,3	0,429	0,3659	4,194	0,0330	0,0450	0,0471	0,0501	0,0193	0,0142	92,3	0,429	0,3662	4,302	0,0321	0,0494	0,0458	0,0542	0,0186	0,0138	94,1
0,376	0,3659	4,194	0,0386	0,0396	0,0531	0,0449	0,0198	0,0145	92,9	0,376	0,3663	4,313	0,0375	0,0444	0,0515	0,0494	0,0191	0,0141	94,8	0,376	0,3667	4,419	0,0364	0,0489	0,0501	0,0535	0,0184	0,0137	96,6
0,333	0,3662	4,300	0,0429	0,0390	0,0572	0,0442	0,0195	0,0143	95,2	0,333	0,3666	4,417	0,0416	0,0438	0,0555	0,0488	0,0188	0,0139	97,1	0,333	0,3670	4,523	0,0405	0,0483	0,0541	0,0529	0,0181	0,0135	98,8
0,250	0,3669	4,498	0,0524	0,0372	0,0656	0,0427	0,0186	0,0131	100,0	0,250	0,3670	4,518	0,0484	0,0420	0,0605	0,0479	0,0180	0,0121	100,0	0,250	0,3671	4,534	0,0447	0,0463	0,0559	0,0526	0,0174	0,0112	100,0
0,200	0,3668	4,449	0,0544	0,0358	0,0653	0,0428	0,0179	0,0109	100,0	0,200	0,3669	4,476	0,0502	0,0406	0,0602	0,0479	0,0174	0,0100	100,0	0,200	0,3669	4,497	0,0464	0,0450	0,0557	0,0526	0,0169	0,0093	100,0
0,167	0,3666	4,415	0,0558	0,0347	0,0651	0,0428	0,0174	0,0093	100,0	0,167	0,3668	4,446	0,0515	0,0396	0,0601	0,0480	0,0170	0,0086	100,0	0,167	0,3668	4,470	0,0476	0,0440	0,0555	0,0526	0,0165	0,0079	100,0
0,143	0,3666	4,389	0,0568	0,0339	0,0649	0,0428	0,0170	0,0081	100,0	0,143	0,3667	4,423	0,0524	0,0388	0,0599	0,0480	0,0167	0,0075	100,0	0,143	0,3668	4,451	0,0485	0,0433	0,0554	0,0526	0,0163	0,0069	100,0
			s1 - 3,0 ba	arA; s2 - 6,	6 barA б	1=0,333							s1 - 3,0 b	arA; s2 - 6	,6 barA б	1=0,250	-						s1 - 3,0 bi	arA; s2 - 6	,6 barA б	1=0,200			
б2	η_{CRN2s}	ε _{CRN2s}	<i>m</i> ₂	m̂3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	<i>m</i> 3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3651	3,970	0,0207	0,0527	0,0344	0,0565	0,0176	0,0138	88,0	0,667	0,3659	4,217	0,0179	0,0635	0,0298	0,0675	0,0159	0,0119	92,2	0,667	0,3663	4,330	0,0189	0,0688	0,0315	0,0700	0,0138	0,0126	95,1
0,500	0,3659	4,215	0,0286	0,0522	0,0429	0,0553	0,0174	0,0143	92,9	0,500	0,3668	4,454	0,0251	0,0632	0,0377	0,0664	0,0158	0,0126	96,8	0,500	0,3671	4,558	0,0261	0,0683	0,0392	0,0689	0,0137	0,0131	99,6
0,429	0,3664	4,347	0,0333	0,0517	0,0476	0,0546	0,0172	0,0143	95,7	0,429	0,3672	4,583	0,0295	0,0627	0,0422	0,0657	0,0157	0,0127	99,3	0,429	0,3672	4,562	0,0279	0,0673	0,0398	0,0688	0,0135	0,0120	100,0
0,376	0,3668	4,460	0,0377	0,0511	0,0518	0,0539	0,0170	0,0142	98,1	0,376	0,3673	4,601	0,0315	0,0619	0,0433	0,0655	0,0155	0,0118	100,0	0,376	0,3671	4,544	0,0289	0,0664	0,0397	0,0688	0,0133	0,0109	100,0
0,333	0,3671	4,546	0,0414	0,0504	0,0552	0,0534	0,0168	0,0138	100,0	0,333	0,3672	4,583	0,0324	0,0611	0,0432	0,0655	0,0153	0,0108	100,0	0,333	0,3670	4,529	0,0297	0,0656	0,0397	0,0688	0,0131	0,0099	100,0
0,250	0,3669	4,493	0,0439	0,0483	0,0549	0,0534	0,0161	0,0110	100,0	0,250	0,3671	4,545	0,0344	0,0593	0,0430	0,0655	0,0148	0,0086	100,0	0,250	0,3669	4,497	0,0316	0,0639	0,0395	0,0688	0,0128	0,0079	100,0
0,200	0,3668	4,457	0,0456	0,0469	0,0547	0,0534	0,0156	0,0091	100,0	0,200	0,3670	4,521	0,0357	0,0582	0,0428	0,0656	0,0145	0,0071	100,0	0,200	0,3669	4,476	0,0328	0,0628	0,0394	0,0688	0,0126	0,0066	100,0
0,167	0,3667	4,433	0,0467	0,0459	0,0545	0,0534	0,0153	0,0078	100,0	0,167	0,3670	4,503	0,0366	0,0573	0,0427	0,0656	0,0143	0,0061	100,0	0,167	0,3668	4,461	0,0337	0,0620	0,0393	0,0688	0,0124	0,0056	100,0
0,143	0,3666	4,414	0,0476	0,0452	0,0544	0,0535	0,0151	0,0068	100,0	0,143	0,3669	4,490	0,0373	0,0567	0,0427	0,0656	0,0142	0,0053	100,0	0,143	0,3668	4,449	0,0343	0,0614	0,0392	0,0688	0,0123	0,0049	100,0
			s1 - 3,0 ba	arA; s2 - 6,	6 barA б	1=0,167							s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,143	1												
б2	η_{CRN2s}	ε _{CRN2s}	<i>m</i> 2	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	<i>m</i> 3	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀										
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]										
0,667	0,3668	4,467	0,0166	0,0757	0,0276	0,0773	0,0126	0,0110	97,4	0,667	0,3670	4,511	0,0184	0,0778	0,0306	0,0766	0,0111	0,0123	99,1										
0,500	0,3673	4,594	0,0214	0,0749	0,0321	0,0767	0,0125	0,0107	100,0	0,500	0,3671	4,533	0,0214	0,0762	0,0321	0,0764	0,0109	0,0107	100,0										
0,429	0,3672	4,577	0,0224	0,0740	0,0320	0,0767	0,0123	0,0096	100,0	0,429	0,3670	4,517	0,0224	0,0753	0,0320	0,0764	0,0108	0,0096	100,0										
0,376	0,3672	4,564	0,0232	0,0732	0,0319	0,0767	0,0122	0,0087	100,0	0,376	0,3670	4,505	0,0232	0,0745	0,0319	0,0764	0,0106	0,0087	100,0										
0,333	0,3671	4,552	0,0239	0,0726	0,0319	0,0767	0,0121	0,0080	100,0	0,333	0,3669	4,494	0,0239	0,0738	0,0318	0,0764	0,0105	0,0080	100,0										
0,250	0,3670	4,528	0,0254	0,0712	0,0317	0,0767	0,0119	0,0063	100,0	0,250	0,3668	4,470	0,0254	0,0724	0,0317	0,0764	0,0103	0,0063	100,0										
0,200	0,3670	4,512	0,0264	0,0703	0,0316	0,0767	0,0117	0,0053	100,0	0,200	0,3668	4,455	0,0263	0,0715	0,0316	0,0765	0,0102	0,0053	100,0										
0,167	0,3669	4,500	0,0271	0,0696	0,0316	0,0767	0,0116	0,0045	100,0	0,167	0,3667	4,444	0,0270	0,0709	0,0316	0,0765	0,0101	0,0045	100,0										
0,143	0,3669	4,492	0,0276	0,0691	0,0315	0,0767	0,0115	0,0039	100,0	0,143	0,3667	4,436	0,0276	0,0704	0,0315	0,0765	0,0101	0,0039	100,0										

Tab. Z2.30 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 3,0 barA, drugi stopień 6,6 barA w zależności od stopnia eżekcji σ₁ dla temperatur kondensatu 100 °C

			s1 - 3,0 ba	arA; s2 - 6,	6 barA б	1=0,500							s1 - 3,0 ba	arA; s2 - 6,	6 barA б	1=0,429							s1 - 3,0 bi	arA; s2 - 6,	6 barA б	1=0,367			
б2	η_{CRN2s}	ε _{crn2s}	π ₂	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η _{CRN2s}	ε _{CRN2s}	m̂2	π̇ ₃	<i>m</i> ₁₄	\dot{m}_{11}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η _{CRN2s}	E _{CRN2s}	m̂2	<i>m</i> ₃	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3640	3,665	0,0206	0,0409	0,0343	0,0476	0,0204	0,0137	81,9	0,667	0,3645	3,795	0,0200	0,0457	0,0333	0,0521	0,0196	0,0133	84,2	0,667	0,3649	3,910	0,0194	0,0502	0,0323	0,0561	0,0189	0,0129	86,3
0,500	0,3649	3,933	0,0290	0,0406	0,0435	0,0463	0,0203	0,0145	87,3	0,500	0,3654	4,055	0,0281	0,0454	0,0421	0,0509	0,0195	0,0140	89,4	0,500	0,3658	4,165	0,0273	0,0499	0,0410	0,0550	0,0187	0,0137	91,3
0,429	0,3654	4,074	0,0340	0,0401	0,0486	0,0456	0,0201	0,0146	90,3	0,429	0,3659	4,194	0,0330	0,0450	0,0471	0,0501	0,0193	0,0142	92,3	0,429	0,3662	4,302	0,0321	0,0494	0,0458	0,0542	0,0186	0,0138	94,1
0,376	0,3659	4,194	0,0386	0,0396	0,0531	0,0449	0,0198	0,0145	92,9	0,376	0,3663	4,313	0,0375	0,0444	0,0515	0,0494	0,0191	0,0141	94,8	0,376	0,3667	4,419	0,0364	0,0489	0,0501	0,0535	0,0184	0,0137	96,6
0,333	0,3662	4,300	0,0429	0,0390	0,0572	0,0442	0,0195	0,0143	95,2	0,333	0,3666	4,417	0,0416	0,0438	0,0555	0,0488	0,0188	0,0139	97,1	0,333	0,3670	4,523	0,0405	0,0483	0,0541	0,0529	0,0181	0,0135	98,8
0,250	0,3671	4,537	0,0535	0,0372	0,0669	0,0425	0,0186	0,0134	100,7	0,250	0,3675	4,653	0,0520	0,0421	0,0650	0,0471	0,0180	0,0130	102,4	0,250	0,3678	4,757	0,0506	0,0464	0,0633	0,0513	0,0175	0,0127	104,0
0,200	0,3676	4,696	0,0615	0,0356	0,0738	0,0411	0,0178	0,0123	104,7	0,200	0,3681	4,816	0,0599	0,0404	0,0719	0,0458	0,0173	0,0120	106,3	0,200	0,3684	4,919	0,0584	0,0448	0,0700	0,0500	0,0168	0,0117	107,8
0,167	0,3681	4,819	0,0680	0,0342	0,0793	0,0400	0,0171	0,0113	107,7	0,167	0,3685	4,936	0,0661	0,0390	0,0772	0,0447	0,0167	0,0110	109,3	0,167	0,3687	5,002	0,0633	0,0434	0,0739	0,0492	0,0163	0,0106	110,0
0,143	0,3684	4,906	0,0730	0,0331	0,0835	0,0391	0,0165	0,0104	110,0	0,143	0,3685	4,945	0,0686	0,0379	0,0784	0,0444	0,0163	0,0098	110,0	0,143	0,3686	4,975	0,0645	0,0425	0,0737	0,0492	0,0160	0,0092	110,0
			s1 - 3,0 ba	arA; s2 - 6,	6 barA б	1=0,333							s1 - 3,0 ba	arA; s2 - 6,	6 barA б	1=0,250							s1 - 3,0 ba	arA; s2 - 6,	6 barA б	1=0,200			
б2	η_{CRN2s}	ε _{CRN2s}	m̂2	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б₂	η _{CRN2s}	ε _{CRN2s}	m ₂	m̂3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3651	3,970	0,0207	0,0527	0,0344	0,0565	0,0176	0,0138	88,0	0,667	0,3659	4,217	0,0179	0,0635	0,0298	0,0675	0,0159	0,0119	92,2	0,667	0,3663	4,330	0,0189	0,0688	0,0315	0,0700	0,0138	0,0126	95,1
0,500	0,3659	4,215	0,0286	0,0522	0,0429	0,0553	0,0174	0,0143	92,9	0,500	0,3668	4,454	0,0251	0,0632	0,0377	0,0664	0,0158	0,0126	96,8	0,500	0,3671	4,558	0,0261	0,0683	0,0392	0,0689	0,0137	0,0131	99,6
0,429	0,3664	4,347	0,0333	0,0517	0,0476	0,0546	0,0172	0,0143	95,7	0,429	0,3672	4,583	0,0295	0,0627	0,0422	0,0657	0,0157	0,0127	99,3	0,429	0,3676	4,680	0,0304	0,0677	0,0435	0,0682	0,0135	0,0131	102,0
0,376	0,3668	4,460	0,0377	0,0511	0,0518	0,0539	0,0170	0,0142	98,1	0,376	0,3676	4,694	0,0336	0,0621	0,0462	0,0650	0,0155	0,0126	101,6	0,376	0,3679	4,785	0,0343	0,0671	0,0473	0,0676	0,0134	0,0129	104,2
0,333	0,3672	4,562	0,0418	0,0504	0,0557	0,0533	0,0168	0,0139	100,3	0,333	0,3680	4,793	0,0374	0,0615	0,0498	0,0644	0,0154	0,0125	103,7	0,333	0,3683	4,879	0,0381	0,0664	0,0507	0,0670	0,0133	0,0127	106,1
0,250	0,3680	4,791	0,0518	0,0484	0,0647	0,0516	0,0161	0,0129	105,4	0,250	0,3688	5,019	0,0467	0,0597	0,0584	0,0629	0,0149	0,0117	108,5	0,250	0,3689	5,055	0,0461	0,0644	0,0576	0,0657	0,0129	0,0115	110,0
0,200	0,3685	4,950	0,0595	0,0467	0,0714	0,0503	0,0156	0,0119	109,1	0,200	0,3689	5,067	0,0508	0,0581	0,0610	0,0624	0,0145	0,0102	110,0	0,200	0,3688	5,023	0,0479	0,0628	0,0574	0,0658	0,0126	0,0096	110,0
0,167	0,3686	4,965	0,0624	0,0453	0,0729	0,0500	0,0151	0,0104	110,0	0,167	0,3688	5,042	0,0521	0,0569	0,0608	0,0624	0,0142	0,0087	110,0	0,167	0,3687	5,001	0,0491	0,0616	0,0573	0,0658	0,0123	0,0082	110,0
0,143	0,3685	4,940	0,0636	0,0444	0,0727	0,0501	0,0148	0,0091	110,0	0,143	0,3688	5,023	0,0531	0,0560	0,0607	0,0625	0,0140	0,0076	110,0	0,143	0,3686	4,984	0,0500	0,0608	0,0572	0,0658	0,0122	0,0071	110,0
			s1 - 3,0 ba	arA; s2 - 6,	6 barA б	1=0,167							s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,143													
б2	η_{CRN2s}	E _{CRN2s}	<i>m</i> ₂	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	E _{CRN2s}	<i>m</i> 2	\dot{m}_3	<i>m</i> ₁₄	\dot{m}_{11}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀										
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]										
0,667	0,3668	4,467	0,0166	0,0757	0,0276	0,0773	0,0126	0,0110	97,4	0,667	0,3669	4,497	0,0181	0,0777	0,0302	0,0767	0,0111	0,0121	99,1										
0,500	0,3676	4,692	0,0234	0,0754	0,0351	0,0762	0,0126	0,0117	101,7	0,500	0,3677	4,727	0,0253	0,0771	0,0379	0,0755	0,0110	0,0126	103,3										
0,429	0,3680	4,813	0,0275	0,0749	0,0392	0,0756	0,0125	0,0118	104,0	0,429	0,3681	4,843	0,0294	0,0765	0,0420	0,0749	0,0109	0,0126	105,6										
0,376	0,3684	4,917	0,0312	0,0743	0,0429	0,0750	0,0124	0,0117	106,1	0,376	0,3685	4,944	0,0331	0,0759	0,0456	0,0743	0,0108	0,0125	107,6										
0,333	0,3687	5,011	0,0347	0,0737	0,0463	0,0744	0,0123	0,0116	108,0	0,333	0,3688	5,034	0,0366	0,0752	0,0489	0,0737	0,0107	0,0122	109,5										
0,250	0,3690	5,087	0,0398	0,0718	0,0497	0,0738	0,0120	0,0099	110,0	0,250	0,3688	5,029	0,0397	0,0730	0,0497	0,0736	0,0104	0,0099	110,0										
0,200	0,3689	5,062	0,0413	0,0704	0,0495	0,0738	0,0117	0,0083	110,0	0,200	0,3687	5,004	0,0413	0,0716	0,0495	0,0736	0,0102	0,0083	110,0										
0,167	0,3689	5,044	0,0424	0,0693	0,0494	0,0738	0,0116	0,0071	110,0	0,167	0,3687	4,987	0,0424	0,0706	0,0494	0,0736	0,0101	0,0071	110,0										
0,143	0,3688	5,030	0,0432	0,0686	0,0494	0,0738	0,0114	0,0062	110,0	0,143	0,3686	4,974	0,0432	0,0698	0,0493	0,0736	0,0100	0,0062	110,0										

Tab. Z2.31 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 3,0 barA, drugi stopień 6,6 barA w zależności od stopnia eżekcji G₁ dla temperatur kondensatu 110 °C

														120 °	°C														
			s1 - 3,0 t	oarA; s2 - 6	5,6 barA 6	51=0,500							s1 - 3,0 b	arA; s2 - 6	6 barA б	1=0,429							s1 - 3,0 b	arA; s2 - 6	,6 barА б	1=0,367			
б2	η_{CRN2s}	ε _{CRN2s}	<i>m</i> ₂	\dot{m}_3	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m ₃	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η _{CRN2s}	ε _{CRN2s}	m̂2	m ₃	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3640	3,665	0,0206	0,0409	0,0343	0,0476	0,0204	0,0137	81,9	0,667	0,3645	3,795	0,0200	0,0457	0,0333	0,0521	0,0196	0,0133	84,2	0,667	0,3649	3,910	0,0194	0,0502	0,0323	0,0561	0,0189	0,0129	86,3
0,500	0,3649	3,933	0,0290	0,0406	0,0435	0,0463	0,0203	0,0145	87,3	0,500	0,3654	4,055	0,0281	0,0454	0,0421	0,0509	0,0195	0,0140	89,4	0,500	0,3658	4,165	0,0273	0,0499	0,0410	0,0550	0,0187	0,0137	91,3
0,429	0,3654	4,074	0,0340	0,0401	0,0486	0,0456	0,0201	0,0146	90,3	0,429	0,3659	4,194	0,0330	0,0450	0,0471	0,0501	0,0193	0,0142	92,3	0,429	0,3662	4,302	0,0321	0,0494	0,0458	0,0542	0,0186	0,0138	94,1
0,376	0,3659	4,194	0,0386	0,0396	0,0531	0,0449	0,0198	0,0145	92,9	0,376	0,3663	4,313	0,0375	0,0444	0,0515	0,0494	0,0191	0,0141	94,8	0,376	0,3667	4,419	0,0364	0,0489	0,0501	0,0535	0,0184	0,0137	96,6
0,333	0,3662	4,300	0,0429	0,0390	0,0572	0,0442	0,0195	0,0143	95,2	0,333	0,3666	4,417	0,0416	0,0438	0,0555	0,0488	0,0188	0,0139	97,1	0,333	0,3670	4,523	0,0405	0,0483	0,0541	0,0529	0,0181	0,0135	98,8
0,250	0,3671	4,537	0,0535	0,0372	0,0669	0,0425	0,0186	0,0134	100,7	0,250	0,3675	4,653	0,0520	0,0421	0,0650	0,0471	0,0180	0,0130	102,4	0,250	0,3678	4,757	0,0506	0,0464	0,0633	0,0513	0,0175	0,0127	104,0
0,200	0,3676	4,696	0,0615	0,0356	0,0738	0,0411	0,0178	0,0123	104,7	0,200	0,3681	4,816	0,0599	0,0404	0,0719	0,0458	0,0173	0,0120	106,3	0,200	0,3684	4,919	0,0584	0,0448	0,0700	0,0500	0,0168	0,0117	107,8
0,167	0,3681	4,819	0,0680	0,0342	0,0793	0,0400	0,0171	0,0113	107,7	0,167	0,3685	4,936	0,0661	0,0390	0,0772	0,0447	0,0167	0,0110	109,3	0,167	0,3688	5,039	0,0644	0,0434	0,0752	0,0489	0,0163	0,0107	110,7
0,143	0,3684	4,910	0,0732	0,0330	0,0836	0,0391	0,0165	0,0105	1110,1	0,143	0,3688	5,028	0,0712	0,0378	0,0814	0,0438	0,0162	0,0102	111,6	0,143	0,3692	5,130	0,0693	0,0421	0,0793	0,0481	0,0158	0,0099	112,9
			s1 - 3,0 k	oarA; s2 - 6	5,6 barA 6	51=0,333							s1 - 3,0 b	arA; s2 - 6	6 barA б	1=0,250	-						s1 - 3,0 b	arA; s2 - 6	,6 barA б	1=0,200			
б2	η_{CRN2s}	ε _{CRN2s}	m ₂	\dot{m}_3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m ₃	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	m ₂	m ₃	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3651	3,970	0,0207	0,0527	0,0344	0,0565	0,0176	0,0138	88,0	0,667	0,3659	4,217	0,0179	0,0635	0,0298	0,0675	0,0159	0,0119	92,2	0,667	0,3663	4,330	0,0189	0,0688	0,0315	0,0700	0,0138	0,0126	95,1
0,500	0,3659	4,215	0,0286	0,0522	0,0429	0,0553	0,0174	0,0143	92,9	0,500	0,3668	4,454	0,0251	0,0632	0,0377	0,0664	0,0158	0,0126	96,8	0,500	0,3671	4,558	0,0261	0,0683	0,0392	0,0689	0,0137	0,0131	99,6
0,429	0,3664	4,347	0,0333	0,0517	0,0476	0,0546	0,0172	0,0143	95,7	0,429	0,3672	4,583	0,0295	0,0627	0,0422	0,0657	0,0157	0,0127	99,3	0,429	0,3676	4,680	0,0304	0,0677	0,0435	0,0682	0,0135	0,0131	102,0
0,376	0,3668	4,460	0,0377	0,0511	0,0518	0,0539	0,0170	0,0142	98,1	0,376	0,3676	4,694	0,0336	0,0621	0,0462	0,0650	0,0155	0,0126	101,6	0,376	0,3679	4,785	0,0343	0,0671	0,0473	0,0676	0,0134	0,0129	104,2
0,333	0,3672	4,562	0,0418	0,0504	0,0557	0,0533	0,0168	0,0139	100,3	0,333	0,3680	4,793	0,0374	0,0615	0,0498	0,0644	0,0154	0,0125	103,7	0,333	0,3683	4,879	0,0381	0,0664	0,0507	0,0670	0,0133	0,0127	106,1
0,250	0,3680	4,791	0,0518	0,0484	0,0647	0,0516	0,0161	0,0129	105,4	0,250	0,3688	5,019	0,0467	0,0597	0,0584	0,0629	0,0149	0,0117	108,5	0,250	0,3690	5,097	0,0472	0,0644	0,0590	0,0655	0,0129	0,0118	110,8
0,200	0,3685	4,950	0,0595	0,0467	0,0714	0,0503	0,0156	0,0119	109,1	0,200	0,3693	5,179	0,0540	0,0580	0,0647	0,0617	0,0145	0,0108	112,0	0,200	0,3696	5,251	0,0542	0,0626	0,0651	0,0643	0,0125	0,0108	114,1
0,167	0,3689	5,067	0,0655	0,0452	0,0764	0,0493	0,0151	0,0109	111,9	0,167	0,3697	5,296	0,0596	0,0565	0,0695	0,0607	0,0141	0,0099	114,7	0,167	0,3700	5,366	0,0598	0,0611	0,0697	0,0633	0,0122	0,0100	116,7
0,143	0,3694	5,194	0,0687	0,0453	0,0785	0,0506	0,0151	0,0098	114,1	0,143	0,3701	5,386	0,0642	0,0553	0,0733	0,0599	0,0138	0,0092	116,8	0,143	0,3703	5,453	0,0642	0,0598	0,0734	0,0626	0,0120	0,0092	118,7
			s1 - 3,0 k	oarA; s2 - 6	5,6 barA 6	51=0,167							s1 - 6,6 b	arA; s2 - 1	0 barA б	L=0,143													
б2	η_{CRN2s}	ε _{CRN2s}	<i>m</i> ₂	\dot{m}_3	<i>m</i> ₁₄	\dot{m}_{11}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀										
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]										
0,667	0,3668	4,467	0,0166	0,0757	0,0276	0,0773	0,0126	0,0110	97,4	0,667	0,3670	4,511	0,0184	0,0778	0,0306	0,0766	0,0111	0,0123	99,1										
0,500	0,3676	4,692	0,0234	0,0754	0,0351	0,0762	0,0126	0,0117	101,7	0,500	0,3677	4,727	0,0253	0,0771	0,0379	0,0755	0,0110	0,0126	103,3										
0,429	0,3680	4,813	0,0275	0,0749	0,0392	0,0756	0,0125	0,0118	104,0	0,429	0,3681	4,843	0,0294	0,0765	0,0420	0,0749	0,0109	0,0126	105,6										
0,376	0,3684	4,917	0,0312	0,0743	0,0429	0,0750	0,0124	0,0117	106,1	0,376	0,3685	4,944	0,0331	0,0759	0,0456	0,0743	0,0108	0,0125	107,6										
0,333	0,3687	5,011	0,0347	0,0737	0,0463	0,0744	0,0123	0,0116	108,0	0,333	0,3688	5,034	0,0366	0,0752	0,0489	0,0737	0,0107	0,0122	109,5										
0,250	0,3695	5,225	0,0433	0,0719	0,0542	0,0730	0,0120	0,0108	112,4	0,250	0,3695	5,241	0,0453	0,0732	0,0566	0,0723	0,0105	0,0113	113,8										
0,200	0,3700	5,380	0,0501	0,0702	0,0601	0,0719	0,0117	0,0100	115,7	0,200	0,3701	5,389	0,0519	0,0714	0,0623	0,0712	0,0102	0,0104	116,9										
0,167	0,3704	5,494	0,0553	0,0687	0,0646	0,0710	0,0115	0,0092	118,2	0,167	0,3705	5,501	0,0572	0,0698	0,0667	0,0703	0,0100	0,0095	119,3										
0,143	0,3707	5,577	0,0594	0,0675	0,0679	0,0703	0,0113	0,0085	120,0	0,143	0,3705	5,520	0,0594	0,0687	0,0679	0,0700	0,0098	0,0085	120,0										

Tab. Z2.32 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 3,0 barA, drugi stopień 6,6 barA w zależności od stopnia eżekcji G₁ dla temperatur kondensatu 120 °C

											130 °	°C																	
			s1 - 3,0 t	oarA; s2 - 6	5,6 barA 6	51=0,500							s1 - 3,0 b	arA; s2 - 6	б barA б	1=0,429							s1 - 3,0 b	arA; s2 - 6	,6 barА б	1=0,367			
б2	η_{CRN2s}	ε _{CRN2s}	<i>m</i> ₂	\dot{m}_3	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m ₃	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η _{CRN2s}	ε _{CRN2s}	m̂2	m̂ ₃	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3640	3,665	0,0206	0,0409	0,0343	0,0476	0,0204	0,0137	81,9	0,667	0,3645	3,795	0,0200	0,0457	0,0333	0,0521	0,0196	0,0133	84,2	0,667	0,3649	3,910	0,0194	0,0502	0,0323	0,0561	0,0189	0,0129	86,3
0,500	0,3649	3,933	0,0290	0,0406	0,0435	0,0463	0,0203	0,0145	87,3	0,500	0,3654	4,055	0,0281	0,0454	0,0421	0,0509	0,0195	0,0140	89,4	0,500	0,3658	4,165	0,0273	0,0499	0,0410	0,0550	0,0187	0,0137	91,3
0,429	0,3654	4,074	0,0340	0,0401	0,0486	0,0456	0,0201	0,0146	90,3	0,429	0,3659	4,194	0,0330	0,0450	0,0471	0,0501	0,0193	0,0142	92,3	0,429	0,3662	4,302	0,0321	0,0494	0,0458	0,0542	0,0186	0,0138	94,1
0,376	0,3659	4,194	0,0386	0,0396	0,0531	0,0449	0,0198	0,0145	92,9	0,376	0,3663	4,313	0,0375	0,0444	0,0515	0,0494	0,0191	0,0141	94,8	0,376	0,3667	4,419	0,0364	0,0489	0,0501	0,0535	0,0184	0,0137	96,6
0,333	0,3662	4,300	0,0429	0,0390	0,0572	0,0442	0,0195	0,0143	95,2	0,333	0,3666	4,417	0,0416	0,0438	0,0555	0,0488	0,0188	0,0139	97,1	0,333	0,3670	4,523	0,0405	0,0483	0,0541	0,0529	0,0181	0,0135	98,8
0,250	0,3671	4,537	0,0535	0,0372	0,0669	0,0425	0,0186	0,0134	100,7	0,250	0,3675	4,653	0,0520	0,0421	0,0650	0,0471	0,0180	0,0130	102,4	0,250	0,3678	4,757	0,0506	0,0464	0,0633	0,0513	0,0175	0,0127	104,0
0,200	0,3676	4,696	0,0615	0,0356	0,0738	0,0411	0,0178	0,0123	104,7	0,200	0,3681	4,816	0,0599	0,0404	0,0719	0,0458	0,0173	0,0120	106,3	0,200	0,3684	4,919	0,0584	0,0448	0,0700	0,0500	0,0168	0,0117	107,8
0,167	0,3681	4,819	0,0680	0,0342	0,0793	0,0400	0,0171	0,0113	107,7	0,167	0,3685	4,936	0,0661	0,0390	0,0772	0,0447	0,0167	0,0110	109,3	0,167	0,3688	5,039	0,0644	0,0434	0,0752	0,0489	0,0163	0,0107	110,7
0,143	0,3684	4,910	0,0732	0,0330	0,0836	0,0391	0,0165	0,0105	1110,1	0,143	0,3688	5,028	0,0712	0,0378	0,0814	0,0438	0,0162	0,0102	111,6	0,143	0,3692	5,130	0,0693	0,0421	0,0793	0,0481	0,0158	0,0099	112,9
			s1 - 3,0 k	oarA; s2 - 6	5,6 barA 🕅	51=0,333							s1 - 3,0 b	arA; s2 - 6	6 barA б	1=0,250							s1 - 3,0 b	arA; s2 - 6	,6 barA б	1=0,200			
б2	η_{CRN2s}	ε _{CRN2s}	m ₂	m̂3	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m ₃	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	m ₂	m̂3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3651	3,970	0,0207	0,0527	0,0344	0,0565	0,0176	0,0138	88,0	0,667	0,3659	4,217	0,0179	0,0635	0,0298	0,0675	0,0159	0,0119	92,2	0,667	0,3663	4,330	0,0189	0,0688	0,0315	0,0700	0,0138	0,0126	95,1
0,500	0,3659	4,215	0,0286	0,0522	0,0429	0,0553	0,0174	0,0143	92,9	0,500	0,3668	4,454	0,0251	0,0632	0,0377	0,0664	0,0158	0,0126	96,8	0,500	0,3671	4,558	0,0261	0,0683	0,0392	0,0689	0,0137	0,0131	99,6
0,429	0,3664	4,347	0,0333	0,0517	0,0476	0,0546	0,0172	0,0143	95,7	0,429	0,3672	4,583	0,0295	0,0627	0,0422	0,0657	0,0157	0,0127	99,3	0,429	0,3676	4,680	0,0304	0,0677	0,0435	0,0682	0,0135	0,0131	102,0
0,376	0,3668	4,460	0,0377	0,0511	0,0518	0,0539	0,0170	0,0142	98,1	0,376	0,3676	4,694	0,0336	0,0621	0,0462	0,0650	0,0155	0,0126	101,6	0,376	0,3679	4,785	0,0344	0,0671	0,0473	0,0676	0,0134	0,0129	104,2
0,333	0,3672	4,562	0,0418	0,0504	0,0557	0,0533	0,0168	0,0139	100,3	0,333	0,3680	4,793	0,0374	0,0615	0,0498	0,0644	0,0154	0,0125	103,7	0,333	0,3683	4,879	0,0381	0,0664	0,0507	0,0670	0,0133	0,0127	106,1
0,250	0,3680	4,791	0,0518	0,0484	0,0647	0,0516	0,0161	0,0129	105,4	0,250	0,3688	5,019	0,0467	0,0597	0,0584	0,0629	0,0149	0,0117	108,5	0,250	0,3690	5,097	0,0472	0,0644	0,0590	0,0655	0,0129	0,0118	110,8
0,200	0,3685	4,950	0,0595	0,0467	0,0714	0,0503	0,0156	0,0119	109,1	0,200	0,3693	5,179	0,0540	0,0580	0,0647	0,0617	0,0145	0,0108	112,0	0,200	0,3696	5,251	0,0542	0,0626	0,0651	0,0643	0,0125	0,0108	114,1
0,167	0,3689	5,067	0,0655	0,0452	0,0764	0,0493	0,0151	0,0109	111,9	0,167	0,3697	5,296	0,0596	0,0565	0,0695	0,0607	0,0141	0,0099	114,7	0,167	0,3700	5,366	0,0598	0,0611	0,0697	0,0633	0,0122	0,0100	116,7
0,143	0,3694	5,194	0,0687	0,0453	0,0785	0,0506	0,0151	0,0098	114,1	0,143	0,3701	5,386	0,0642	0,0553	0,0733	0,0599	0,0138	0,0092	116,8	0,143	0,3703	5,453	0,0642	0,0598	0,0734	0,0626	0,0120	0,0092	118,7
			s1 - 3,0 k	oarA; s2 - 6	5,6 barA 6	51=0,167							s1 - 6,6 b	arA; s2 - 1	0 barA б	L=0,143				Į									
б2	η_{CRN2s}	ε _{CRN2s}	<i>m</i> ₂	\dot{m}_3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	ļ									
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]										
0,667	0,3668	4,467	0,0166	0,0757	0,0276	0,0773	0,0126	0,0110	97,4	0,667	0,3670	4,511	0,0184	0,0778	0,0306	0,0766	0,0111	0,0123	99,1										
0,500	0,3676	4,692	0,0234	0,0754	0,0351	0,0762	0,0126	0,0117	101,7	0,500	0,3677	4,727	0,0253	0,0771	0,0379	0,0755	0,0110	0,0126	103,3										
0,429	0,3680	4,813	0,0275	0,0749	0,0392	0,0756	0,0125	0,0118	104,0	0,429	0,3681	4,843	0,0294	0,0765	0,0420	0,0749	0,0109	0,0126	105,6										
0,376	0,3684	4,917	0,0312	0,0743	0,0429	0,0750	0,0124	0,0117	106,1	0,376	0,3685	4,944	0,0331	0,0759	0,0456	0,0743	0,0108	0,0125	107,6	Į									
0,333	0,3687	5,011	0,0347	0,0737	0,0463	0,0744	0,0123	0,0116	108,0	0,333	0,3688	5,034	0,0366	0,0752	0,0489	0,0737	0,0107	0,0122	109,5	Į									
0,250	0,3695	5,225	0,0433	0,0719	0,0542	0,0730	0,0120	0,0108	112,4	0,250	0,3695	5,241	0,0453	0,0732	0,0566	0,0723	0,0105	0,0113	113,8	Į									
0,200	0,3700	5,380	0,0501	0,0702	0,0601	0,0719	0,0117	0,0100	115,7	0,200	0,3701	5,389	0,0519	0,0714	0,0623	0,0712	0,0102	0,0104	116,9	Į									
0,167	0,3704	5,494	0,0553	0,0687	0,0646	0,0710	0,0115	0,0092	118,2	0,167	0,3705	5,501	0,0572	0,0698	0,0667	0,0703	0,0100	0,0095	119,3										
0,143	0,3707	5,580	0,0595	0,0675	0,0680	0,0702	0,0112	0,0085	120,1	0,143	0,3708	5,586	0,0614	0,0685	0,0702	0,0696	0,0098	0,0088	121,2										

Tab. Z2.33 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 3,0 barA, drugi stopień 6,6 barA w zależności od stopnia eżekcji G₁ dla temperatur kondensatu 130 °C

													100	°C															
			s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,500							s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,429							s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,367			
б2	η _{CRN2s}	ε _{CRN2s}	<i>m</i> ₂	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{crn2s}	\dot{m}_2	m̂3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3646	3,843	0,0226	0,0414	0,0377	0,0471	0,0207	0,0151	84,2	0,667	0,3651	3,972	0,0220	0,0464	0,0367	0,0516	0,0199	0,0147	86,5	0,667	0,3655	4,091	0,0215	0,0509	0,0358	0,0556	0,0191	0,0143	88,7
0,500	0,3657	4,158	0,0318	0,0410	0,0477	0,0457	0,0205	0,0159	90,2	0,500	0,3662	4,283	0,0310	0,0460	0,0465	0,0502	0,0197	0,0155	92,4	0,500	0,3666	4,398	0,0303	0,0504	0,0455	0,0542	0,0190	0,0152	94,4
0,429	0,3663	4,329	0,0373	0,0405	0,0534	0,0448	0,0203	0,0160	93,6	0,429	0,3668	4,451	0,0364	0,0454	0,0520	0,0493	0,0195	0,0156	95,7	0,429	0,3672	4,562	0,0356	0,0499	0,0509	0,0534	0,0188	0,0153	97,6
0,376	0,3669	4,477	0,0425	0,0399	0,0584	0,0439	0,0200	0,0160	96,6	0,376	0,3673	4,598	0,0414	0,0448	0,0570	0,0485	0,0192	0,0156	98,6	0,376	0,3676	4,683	0,0400	0,0492	0,0550	0,0527	0,0185	0,0150	100,0
0,333	0,3673	4,609	0,0473	0,0392	0,0630	0,0431	0,0196	0,0158	99,3	0,333	0,3675	4,657	0,0445	0,0440	0,0593	0,0481	0,0189	0,0148	100,0	0,333	0,3675	4,659	0,0411	0,0483	0,0548	0,0527	0,0181	0,0137	100,0
0,250	0,3672	4,585	0,0511	0,0371	0,0638	0,0429	0,0186	0,0128	100,0	0,250	0,3673	4,599	0,0471	0,0419	0,0589	0,0481	0,0180	0,0118	100,0	0,250	0,3673	4,609	0,0436	0,0462	0,0544	0,0527	0,0174	0,0109	100,0
0,200	0,3671	4,540	0,0529	0,0357	0,0635	0,0430	0,0179	0,0106	100,0	0,200	0,3672	4,560	0,0488	0,0405	0,0586	0,0481	0,0174	0,0098	100,0	0,200	0,3672	4,575	0,0452	0,0449	0,0542	0,0528	0,0169	0,0090	100,0
0,167	0,3670	4,509	0,0542	0,0347	0,0633	0,0430	0,0173	0,0090	100,0	0,167	0,3671	4,533	0,0501	0,0395	0,0584	0,0482	0,0170	0,0083	100,0	0,167	0,3671	4,551	0,0463	0,0440	0,0540	0,0528	0,0165	0,0077	100,0
0,143	0,3669	4,486	0,0552	0,0339	0,0631	0,0430	0,0170	0,0079	100,0	0,143	0,3670	4,513	0,0510	0,0388	0,0582	0,0482	0,0167	0,0073	100,0	0,143	0,3671	4,533	0,0471	0,0433	0,0539	0,0528	0,0163	0,0067	100,0
			s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,333							s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,250							s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,200			
б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{crn2s}	\dot{m}_2	τh ₃	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3657	4,154	0,0228	0,0534	0,0380	0,0560	0,0178	0,0152	90,5	0,667	0,3666	4,405	0,0202	0,0643	0,0336	0,0669	0,0161	0,0134	94,7	0,667	0,3670	4,521	0,0212	0,0696	0,0354	0,0694	0,0139	0,0141	97,7
0,500	0,3668	4,452	0,0316	0,0528	0,0475	0,0546	0,0176	0,0158	96,1	0,500	0,3676	4,693	0,0284	0,0638	0,0426	0,0656	0,0160	0,0142	100,0	0,500	0,3674	4,626	0,0261	0,0682	0,0391	0,0688	0,0136	0,0130	100,0
0,429	0,3673	4,614	0,0369	0,0522	0,0528	0,0537	0,0174	0,0158	99,2	0,429	0,3675	4,670	0,0297	0,0627	0,0424	0,0656	0,0157	0,0127	100,0	0,429	0,3673	4,607	0,0272	0,0671	0,0389	0,0689	0,0134	0,0117	100,0
0,376	0,3674	4,636	0,0392	0,0512	0,0540	0,0535	0,0171	0,0147	100,0	0,376	0,3675	4,652	0,0307	0,0617	0,0423	0,0656	0,0154	0,0115	100,0	0,376	0,3673	4,592	0,0282	0,0662	0,0388	0,0689	0,0132	0,0106	100,0
0,333	0,3673	4,613	0,0404	0,0502	0,0538	0,0535	0,0167	0,0135	100,0	0,333	0,3674	4,636	0,0316	0,0609	0,0421	0,0656	0,0152	0,0105	100,0	0,333	0,3672	4,578	0,0290	0,0655	0,0387	0,0689	0,0131	0,0097	100,0
0,250	0,3672	4,566	0,0427	0,0482	0,0534	0,0536	0,0161	0,0107	100,0	0,250	0,3673	4,603	0,0335	0,0592	0,0419	0,0657	0,0148	0,0084	100,0	0,250	0,3671	4,550	0,0308	0,0638	0,0385	0,0689	0,0128	0,0077	100,0
0,200	0,3671	4,534	0,0443	0,0468	0,0532	0,0536	0,0156	0,0089	100,0	0,200	0,3672	4,581	0,0347	0,0581	0,0417	0,0657	0,0145	0,0069	100,0	0,200	0,3671	4,531	0,0319	0,0628	0,0383	0,0689	0,0126	0,0064	100,0
0,167	0,3670	4,512	0,0454	0,0459	0,0530	0,0536	0,0153	0,0076	100,0	0,167	0,3672	4,565	0,0356	0,0573	0,0415	0,0657	0,0143	0,0059	100,0	0,167	0,3670	4,518	0,0327	0,0620	0,0382	0,0690	0,0124	0,0055	100,0
0,143	0,3669	4,495	0,0463	0,0452	0,0529	0,0536	0,0151	0,0066	100,0	0,143	0,3671	4,553	0,0363	0,0567	0,0415	0,0657	0,0142	0,0052	100,0	0,143	0,3670	4,508	0,0333	0,0614	0,0381	0,0690	0,0123	0,0048	100,0
			s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,167	1						s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,143	1	_											
б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	<i>m</i> 3	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀										
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]										
0,667	0,3675	4,658	0,0190	0,0766	0,0316	0,0767	0,0128	0,0127	100,0	0,667	0,3673	4,596	0,0190	0,0780	0,0316	0,0765	0,0111	0,0126	100,0										
0,500	0,3674	4,628	0,0209	0,0748	0,0314	0,0767	0,0125	0,0105	100,0	0,500	0,3672	4,568	0,0209	0,0761	0,0314	0,0765	0,0109	0,0105	100,0										
0,429	0,3673	4,614	0,0219	0,0738	0,0313	0,0768	0,0123	0,0094	100,0	0,429	0,3671	4,554	0,0219	0,0751	0,0312	0,0765	0,0107	0,0094	100,0										
0,376	0,3673	4,602	0,0227	0,0731	0,0312	0,0768	0,0122	0,0085	100,0	0,376	0,3671	4,543	0,0226	0,0744	0,0311	0,0765	0,0106	0,0085	100,0										
0,333	0,3673	4,592	0,0233	0,0725	0,0311	0,0768	0,0121	0,0078	100,0	0,333	0,3671	4,533	0,0233	0,0738	0,0311	0,0765	0,0105	0,0078	100,0										
0,250	0,3672	4,570	0,0247	0,0711	0,0309	0,0768	0,0119	0,0062	100,0	0,250	0,3670	4,513	0,0247	0,0724	0,0309	0,0765	0,0103	0,0062	100,0										
0,200	0,3671	4,556	0,0256	0,0702	0,0308	0,0768	0,0117	0,0051	100,0	0,200	0,3669	4,499	0,0256	0,0715	0,0308	0,0766	0,0102	0,0051	100,0										
0,167	0,3671	4,546	0,0263	0,0696	0,0307	0,0768	0,0116	0,0044	100,0	0,167	0,3669	4,490	0,0263	0,0708	0,0307	0,0766	0,0101	0,0044	100,0										
0,143	0,3671	4,539	0,0268	0,0691	0,0306	0,0768	0,0115	0,0038	100,0	0,143	0,3669	4,483	0,0268	0,0704	0,0306	0,0766	0,0101	0,0038	100,0										

Tab. Z2.34 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 3,0 barA, drugi stopień 10 barA w zależności od stopnia eżekcji σ₁ dla temperatur kondensatu 100 °C

														110	°C														
			s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,500							s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,429							s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,367			
б2	η _{CRN2s}	ε _{CRN2s}	m ₂	m ₃	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	m ₃	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	iπ _{x2}	t ₁₀	б2	η _{CRN2s}	E _{CRN2s}	m ₂	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3646	3,843	0,0226	0,0414	0,0377	0,0471	0,0207	0,0151	84,2	0,667	0,3651	3,972	0,0220	0,0464	0,0367	0,0516	0,0199	0,0147	86,5	0,667	0,3655	4,091	0,0215	0,0509	0,0358	0,0556	0,0191	0,0143	88,7
0,500	0,3657	4,158	0,0318	0,0410	0,0477	0,0457	0,0205	0,0159	90,2	0,500	0,3662	4,283	0,0310	0,0460	0,0465	0,0502	0,0197	0,0155	92,4	0,500	0,3666	4,398	0,0303	0,0504	0,0455	0,0542	0,0190	0,0152	94,4
0,429	0,3663	4,329	0,0373	0,0405	0,0534	0,0448	0,0203	0,0160	93,6	0,429	0,3668	4,451	0,0364	0,0454	0,0520	0,0493	0,0195	0,0156	95,7	0,429	0,3672	4,562	0,0356	0,0499	0,0509	0,0534	0,0188	0,0153	97,6
0,376	0,3669	4,477	0,0425	0,0399	0,0584	0,0439	0,0200	0,0160	96,6	0,376	0,3673	4,598	0,0414	0,0448	0,0570	0,0485	0,0192	0,0156	98,6	0,376	0,3677	4,706	0,0405	0,0493	0,0557	0,0526	0,0185	0,0152	100,4
0,333	0,3673	4,609	0,0473	0,0392	0,0630	0,0431	0,0196	0,0158	99,3	0,333	0,3677	4,728	0,0461	0,0441	0,0615	0,0477	0,0189	0,0154	101,2	0,333	0,3681	4,835	0,0451	0,0485	0,0601	0,0518	0,0182	0,0150	103,0
0,250	0,3684	4,909	0,0592	0,0372	0,0740	0,0410	0,0186	0,0148	105,6	0,250	0,3688	5,028	0,0578	0,0420	0,0723	0,0456	0,0180	0,0145	107,3	0,250	0,3692	5,134	0,0566	0,0464	0,0707	0,0497	0,0174	0,0141	109,1
0,200	0,3691	5,104	0,0680	0,0353	0,0816	0,0394	0,0177	0,0136	110,0	0,200	0,3691	5,127	0,0638	0,0402	0,0766	0,0447	0,0173	0,0128	110,0	0,200	0,3692	5,144	0,0601	0,0446	0,0721	0,0494	0,0168	0,0120	110,0
0,167	0,3689	5,063	0,0697	0,0340	0,0813	0,0394	0,0170	0,0116	110,0	0,167	0,3690	5,091	0,0654	0,0389	0,0763	0,0447	0,0167	0,0109	110,0	0,167	0,3691	5,112	0,0616	0,0434	0,0718	0,0495	0,0163	0,0103	110,0
0,143	0,3688	5,033	0,0709	0,0331	0,0811	0,0395	0,0165	0,0101	110,0	0,143	0,3689	5,064	0,0666	0,0380	0,0761	0,0448	0,0163	0,0095	110,0	0,143	0,3690	5,088	0,0627	0,0425	0,0716	0,0495	0,0160	0,0090	110,0
			s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,333							s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,250							s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,200			
б2	η_{CRN2s}	ε _{crn2s}	\dot{m}_2	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	π ₃	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t10	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3657	4,154	0,0228	0,0534	0,0380	0,0560	0,0178	0,0152	90,5	0,667	0,3666	4,405	0,0202	0,0643	0,0336	0,0669	0,0161	0,0134	94,7	0,667	0,3670	4,521	0,0212	0,0696	0,0354	0,0694	0,0139	0,0141	97,7
0,500	0,3668	4,452	0,0316	0,0528	0,0475	0,0546	0,0176	0,0158	96,1	0,500	0,3676	4,694	0,0284	0,0638	0,0426	0,0656	0,0160	0,0142	100,0	0,500	0,3680	4,803	0,0294	0,0690	0,0442	0,0680	0,0138	0,0147	102,9
0,429	0,3673	4,614	0,0369	0,0522	0,0528	0,0537	0,0174	0,0158	99,2	0,429	0,3682	4,853	0,0334	0,0633	0,0477	0,0648	0,0158	0,0143	103,0	0,429	0,3686	4,965	0,0345	0,0683	0,0494	0,0672	0,0137	0,0148	105,9
0,376	0,3678	4,753	0,0418	0,0515	0,0575	0,0529	0,0172	0,0157	102,0	0,376	0,3687	4,991	0,0380	0,0626	0,0522	0,0640	0,0156	0,0143	105,6	0,376	0,3690	5,090	0,0389	0,0675	0,0535	0,0664	0,0135	0,0146	108,3
0,333	0,3682	4,868	0,0469	0,0502	0,0626	0,0513	0,0167	0,0156	104,5	0,333	0,3691	5,116	0,0423	0,0619	0,0564	0,0632	0,0155	0,0141	108,0	0,333	0,3693	5,175	0,0423	0,0667	0,0564	0,0659	0,0133	0,0141	110,0
0,250	0,3692	5,146	0,0571	0,0484	0,0714	0,0502	0,0161	0,0143	110,0	0,250	0,3694	5,186	0,0476	0,0596	0,0596	0,0626	0,0149	0,0119	110,0	0,250	0,3692	5,133	0,0449	0,0643	0,0561	0,0659	0,0129	0,0112	110,0
0,200	0,3691	5,103	0,0592	0,0466	0,0710	0,0503	0,0155	0,0118	110,0	0,200	0,3692	5,154	0,0494	0,0580	0,0593	0,0626	0,0145	0,0099	110,0	0,200	0,3691	5,105	0,0465	0,0627	0,0558	0,0660	0,0125	0,0093	110,0
0,167	0,3690	5,073	0,0607	0,0453	0,0708	0,0503	0,0151	0,0101	110,0	0,167	0,3692	5,132	0,0507	0,0569	0,0591	0,0627	0,0142	0,0084	110,0	0,167	0,3690	5,086	0,0477	0,0616	0,0557	0,0660	0,0123	0,0080	110,0
0,143	0,3689	5,050	0,0618	0,0444	0,0706	0,0503	0,0148	0,0088	110,0	0,143	0,3691	5,115	0,0516	0,0560	0,0590	0,0627	0,0140	0,0074	110,0	0,143	0,3689	5,071	0,0486	0,0608	0,0556	0,0660	0,0122	0,0069	110,0
			s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,167							s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,143													
б2	η_{CRN2s}	E _{CRN2s}	<i>m</i> ₂	m̂3	<i>m</i> ₁₄	<i>m</i> ₁₁	<i>m</i> _{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	<i>ṁ</i> 3	<i>m</i> ₁₄	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀										
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]										
0,667	0,3675	4,659	0,0190	0,0766	0,0317	0,0767	0,0128	0,0127	100,0	0,667	0,3677	4,707	0,0208	0,0786	0,0347	0,0760	0,0112	0,0139	101,8										
0,500	0,3685	4,940	0,0269	0,0761	0,0403	0,0754	0,0127	0,0134	105,1	0,500	0,3686	4,978	0,0288	0,0779	0,0431	0,0746	0,0111	0,0144	106,7										
0,429	0,3690	5,091	0,0315	0,0755	0,0451	0,0746	0,0126	0,0135	107,8	0,429	0,3691	5,127	0,0335	0,0772	0,0479	0,0738	0,0110	0,0144	109,4										
0,376	0,3694	5,205	0,0355	0,0748	0,0488	0,0739	0,0125	0,0133	110,0	0,376	0,3692	5,144	0,0354	0,0761	0,0488	0,0737	0,0109	0,0133	110,0										
0,333	0,3694	5,189	0,0365	0,0738	0,0487	0,0739	0,0123	0,0122	110,0	0,333	0,3691	5,129	0,0365	0,0751	0,0486	0,0737	0,0107	0,0122	110,0										
0,250	0,3692	5,155	0,0387	0,0717	0,0484	0,0740	0,0120	0,0097	110,0	0,250	0,3690	5,096	0,0387	0,0730	0,0483	0,0737	0,0104	0,0097	110,0										
0,200	0,3692	5,133	0,0402	0,0703	0,0482	0,0740	0,0117	0,0080	110,0	0,200	0,3690	5,075	0,0401	0,0716	0,0482	0,0738	0,0102	0,0080	110,0										
0,167	0,3691	5,117	0,0412	0,0693	0,0480	0,0740	0,0116	0,0069	110,0	0,167	0,3689	5,060	0,0412	0,0706	0,0480	0,0738	0,0101	0,0069	110,0										
0,143	0,3691	5,105	0,0420	0,0686	0,0479	0,0740	0,0114	0,0060	110,0	0,143	0,3689	5,049	0,0419	0,0698	0,0479	0,0738	0,0100	0,0060	110,0										

Tab. Z2.35 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 3,0 barA, drugi stopień 10 barA w zależności od stopnia eżekcji G₁ dla temperatur kondensatu 110 °C

																													-
														120	Ű														
			s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,500							s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,429							s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,367			
б2	η_{CRN2s}	ε _{CRN2s}	m ₂	m̂3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{crn2s}	\dot{m}_2	π̀3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η_{CRN2s}	ε _{crn2s}	<i>m</i> ₂	<i>m</i> 3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3646	3,843	0,0226	0,0414	0,0377	0,0471	0,0207	0,0151	84,2	0,667	0,3651	3,972	0,0220	0,0464	0,0367	0,0516	0,0199	0,0147	86,5	0,667	0,3655	4,091	0,0215	0,0509	0,0358	0,0556	0,0191	0,0143	88,7
0,500	0,3657	4,158	0,0318	0,0410	0,0477	0,0457	0,0205	0,0159	90,2	0,500	0,3662	4,283	0,0310	0,0460	0,0465	0,0502	0,0197	0,0155	92,4	0,500	0,3666	4,398	0,0303	0,0504	0,0455	0,0542	0,0190	0,0152	94,4
0,429	0,3663	4,329	0,0373	0,0405	0,0534	0,0448	0,0203	0,0160	93,6	0,429	0,3668	4,451	0,0364	0,0454	0,0520	0,0493	0,0195	0,0156	95,7	0,429	0,3672	4,562	0,0356	0,0499	0,0509	0,0534	0,0188	0,0153	97,6
0,376	0,3669	4,477	0,0425	0,0399	0,0584	0,0439	0,0200	0,0160	96,6	0,376	0,3673	4,598	0,0414	0,0448	0,0570	0,0485	0,0192	0,0156	98,6	0,376	0,3677	4,706	0,0405	0,0493	0,0557	0,0526	0,0185	0,0152	100,4
0,333	0,3673	4,609	0,0473	0,0392	0,0630	0,0431	0,0196	0,0158	99,3	0,333	0,3677	4,728	0,0461	0,0441	0,0615	0,0477	0,0189	0,0154	101,2	0,333	0,3681	4,835	0,0451	0,0485	0,0601	0,0518	0,0182	0,0150	103,0
0,250	0,3684	4,909	0,0592	0,0372	0,0740	0,0410	0,0186	0,0148	105,6	0,250	0,3688	5,028	0,0578	0,0420	0,0723	0,0456	0,0180	0,0145	107,3	0,250	0,3692	5,134	0,0566	0,0464	0,0707	0,0497	0,0174	0,0141	109,1
0,200	0,3691	5,121	0,0685	0,0353	0,0822	0,0393	0,0177	0,0137	110,3	0,200	0,3695	5,241	0,0669	0,0401	0,0803	0,0439	0,0172	0,0134	112,0	0,200	0,3699	5,346	0,0654	0,0445	0,0785	0,0481	0,0167	0,0131	113,5
0,167	0,3697	5,277	0,0758	0,0337	0,0884	0,0379	0,0168	0,0126	113,8	0,167	0,3701	5,397	0,0740	0,0384	0,0863	0,0426	0,0165	0,0123	115,4	0,167	0,3705	5,504	0,0725	0,0427	0,0846	0,0467	0,0161	0,0121	116,9
0,143	0,3701	5,398	0,0817	0,0323	0,0933	0,0367	0,0161	0,0117	116,6	0,143	0,3705	5,519	0,0798	0,0370	0,0912	0,0414	0,0159	0,0114	118,2	0,143	0,3709	5,625	0,0782	0,0413	0,0893	0,0456	0,0155	0,0112	119,6
		s1 - 3,0 barA; s2 - 10 barA 61=0,333 s1 - 3,0 barA; s2 - 10 barA 61=0,250																	s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,200							
б2	η_{CRN2s}	ε _{crn2s}	m ₂	m ₃	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m ₃	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	iπ _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	<i>m</i> ₃	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3657	4,154	0,0228	0,0534	0,0380	0,0560	0,0178	0,0152	90,5	0,667	0,3666	4,405	0,0202	0,0643	0,0336	0,0669	0,0161	0,0134	94,7	0,667	0,3670	4,521	0,0212	0,0696	0,0354	0,0694	0,0139	0,0141	97,7
0,500	0,3668	4,452	0,0316	0,0528	0,0475	0,0546	0,0176	0,0158	96,1	0,500	0,3676	4,694	0,0284	0,0638	0,0426	0,0656	0,0160	0,0142	100,0	0,500	0,3680	4,803	0,0294	0,0690	0,0442	0,0680	0,0138	0,0147	102,9
0,429	0,3673	4,614	0,0369	0,0522	0,0528	0,0537	0,0174	0,0158	99,2	0,429	0,3682	4,853	0,0334	0,0633	0,0477	0,0648	0,0158	0,0143	103,0	0,429	0,3686	4,965	0,0345	0,0683	0,0494	0,0672	0,0137	0,0148	105,9
0,376	0,3678	4,753	0,0418	0,0515	0,0575	0,0529	0,0172	0,0157	102,0	0,376	0,3687	4,991	0,0380	0,0626	0,0522	0,0640	0,0156	0,0143	105,6	0,376	0,3690	5,090	0,0389	0,0675	0,0535	0,0664	0,0135	0,0146	108,3
0,333	0,3682	4,868	0,0469	0,0502	0,0626	0,0513	0,0167	0,0156	104,5	0,333	0,3691	5,116	0,0423	0,0619	0,0564	0,0632	0,0155	0,0141	108,0	0,333	0,3694	5,211	0,0431	0,0667	0,0575	0,0657	0,0133	0,0144	110,6
0,250	0,3693	5,173	0,0578	0,0484	0,0722	0,0501	0,0161	0,0144	110,5	0,250	0,3701	5,403	0,0530	0,0596	0,0662	0,0613	0,0149	0,0132	113,7	0,250	0,3704	5,490	0,0536	0,0643	0,0670	0,0638	0,0129	0,0134	116,0
0,200	0,3700	5,382	0,0666	0,0463	0,0800	0,0484	0,0154	0,0133	114,9	0,200	0,3708	5,613	0,0614	0,0576	0,0737	0,0597	0,0144	0,0123	117,9	0,200	0,3711	5,689	0,0617	0,0622	0,0741	0,0623	0,0124	0,0123	120,0
0,167	0,3706	5,538	0,0736	0,0445	0,0859	0,0471	0,0148	0,0123	118,2	0,167	0,3712	5,707	0,0663	0,0560	0,0773	0,0589	0,0140	0,0110	120,0	0,167	0,3710	5,663	0,0633	0,0607	0,0738	0,0623	0,0121	0,0105	120,0
0,143	0,3708	5,610	0,0779	0,0431	0,0890	0,0464	0,0144	0,0111	120,0	0,143	0,3711	5,685	0,0675	0,0549	0,0772	0,0590	0,0137	0,0096	120,0	0,143	0,3710	5,643	0,0645	0,0597	0,0737	0,0624	0,0119	0,0092	120,0
			s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,167							s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,143													
б2	η_{CRN2s}	ε _{CRN2s}	m ₂	m ₃	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	m ₃	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀										
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]										
0,667	0,3675	4,659	0,0190	0,0766	0,0317	0,0767	0,0128	0,0127	100,0	0,667	0,3677	4,707	0,0208	0,0786	0,0347	0,0760	0,0112	0,0139	101,8										
0,500	0,3685	4,940	0,0269	0,0761	0,0403	0,0754	0,0127	0,0134	105,1	0,500	0,3686	4,978	0,0288	0,0779	0,0431	0,0746	0,0111	0,0144	106,7										
0,429	0,3690	5,091	0,0315	0,0755	0,0451	0,0746	0,0126	0,0135	107,8	0,429	0,3691	5,127	0,0335	0,0772	0,0479	0,0738	0,0110	0,0144	109,4										
0,376	0,3695	5,223	0,0358	0,0748	0,0493	0,0738	0,0125	0,0135	110,3	0,376	0,3696	5,257	0,0379	0,0764	0,0521	0,0731	0,0109	0,0142	111,9										
0,333	0,3699	5,343	0,0399	0,0741	0,0532	0,0731	0,0123	0,0133	112,5	0,333	0,3700	5,373	0,0419	0,0755	0,0559	0,0724	0,0108	0,0140	114,0										
0,250	0,3709	5,620	0,0500	0,0718	0,0625	0,0713	0,0120	0,0125	117,8	0,250	0,3710	5,642	0,0520	0,0731	0,0650	0,0705	0,0104	0,0130	119,2										
0,200	0,3712	5,720	0,0552	0,0699	0,0662	0,0705	0,0117	0,0110	120,0	0,200	0,3710	5,661	0,0552	0,0711	0,0662	0,0703	0,0102	0,0110	120,0										
0,167	0,3711	5,697	0,0566	0,0686	0,0661	0,0705	0,0114	0,0094	120,0	0,167	0,3709	5,640	0,0566	0,0698	0,0660	0,0703	0,0100	0,0094	120,0										
0,143	0,3711	5,681	0,0577	0,0675	0,0659	0,0706	0,0113	0,0082	120,0	0,143	0,3709	5,625	0,0577	0,0687	0,0659	0,0703	0,0098	0,0082	120,0										

Tab. Z2.36 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 3,0 barA, drugi stopień 10 barA w zależności od stopnia eżekcji G₁ dla temperatur kondensatu 120 °C

		130 °C s1 - 3,0 barA; s2 - 10 barA 61=0,500 s1 - 3,0 barA; s2 - 10 barA 61=0,429 ε _{CRN25} m m m m																											
			s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,500							s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,429							s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,367			
б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η _{CRN2s}	E _{CRN2s}	<i>m</i> ₂	<i>m</i> 3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3646	3,843	0,0226	0,0414	0,0377	0,0471	0,0207	0,0151	84,2	0,667	0,3651	3,972	0,0220	0,0464	0,0367	0,0516	0,0199	0,0147	86,5	0,667	0,3655	4,091	0,0215	0,0509	0,0358	0,0556	0,0191	0,0143	88,7
0,500	0,3657	4,158	0,0318	0,0410	0,0477	0,0457	0,0205	0,0159	90,2	0,500	0,3662	4,283	0,0310	0,0460	0,0465	0,0502	0,0197	0,0155	92,4	0,500	0,3666	4,398	0,0303	0,0504	0,0455	0,0542	0,0190	0,0152	94,4
0,429	0,3663	4,329	0,0373	0,0405	0,0534	0,0448	0,0203	0,0160	93,6	0,429	0,3668	4,451	0,0364	0,0454	0,0520	0,0493	0,0195	0,0156	95,7	0,429	0,3672	4,562	0,0356	0,0499	0,0509	0,0534	0,0188	0,0153	97,6
0,376	0,3669	4,477	0,0425	0,0399	0,0584	0,0439	0,0200	0,0160	96,6	0,376	0,3673	4,598	0,0414	0,0448	0,0570	0,0485	0,0192	0,0156	98,6	0,376	0,3677	4,706	0,0405	0,0493	0,0557	0,0526	0,0185	0,0152	100,4
0,333	0,3673	4,609	0,0473	0,0392	0,0630	0,0431	0,0196	0,0158	99,3	0,333	0,3677	4,728	0,0461	0,0441	0,0615	0,0477	0,0189	0,0154	101,2	0,333	0,3681	4,835	0,0451	0,0485	0,0601	0,0518	0,0182	0,0150	103,0
0,250	0,3684	4,909	0,0592	0,0372	0,0740	0,0410	0,0186	0,0148	105,6	0,250	0,3688	5,028	0,0578	0,0420	0,0723	0,0456	0,0180	0,0145	107,3	0,250	0,3692	5,134	0,0566	0,0464	0,0707	0,0497	0,0174	0,0141	109,1
0,200	0,3691	5,121	0,0685	0,0353	0,0822	0,0393	0,0177	0,0137	110,3	0,200	0,3695	5,241	0,0669	0,0401	0,0803	0,0439	0,0172	0,0134	112,0	0,200	0,3699	5,346	0,0654	0,0445	0,0785	0,0481	0,0167	0,0131	113,5
0,167	0,3697	5,277	0,0758	0,0337	0,0884	0,0379	0,0168	0,0126	113,8	0,167	0,3701	5,397	0,0740	0,0384	0,0863	0,0426	0,0165	0,0123	115,4	0,167	0,3705	5,504	0,0725	0,0427	0,0846	0,0467	0,0161	0,0121	116,9
0,143	0,3701	5,398	0,0817	0,0323	0,0933	0,0367	0,0161	0,0117	116,6	0,143	0,3705	5,519	0,0798	0,0370	0,0912	0,0414	0,0159	0,0114	118,2	0,143	0,3709	5,625	0,0782	0,0413	0,0893	0,0456	0,0155	0,0112	119,6
			s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,333	-						s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,250	r				-	-	s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,200			
б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	<i>m</i> 3	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	<i>ṁ</i> 3	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂ ₃	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3657	4,154	0,0228	0,0534	0,0380	0,0560	0,0178	0,0152	90,5	0,667	0,3666	4,405	0,0202	0,0643	0,0336	0,0669	0,0161	0,0134	94,7	0,667	0,3670	4,521	0,0212	0,0696	0,0354	0,0694	0,0139	0,0141	97,7
0,500	0,3668	4,452	0,0316	0,0528	0,0475	0,0546	0,0176	0,0158	96,1	0,500	0,3676	4,694	0,0284	0,0638	0,0426	0,0656	0,0160	0,0142	100,0	0,500	0,3680	4,803	0,0294	0,0690	0,0442	0,0680	0,0138	0,0147	102,9
0,429	0,3673	4,614	0,0369	0,0522	0,0528	0,0537	0,0174	0,0158	99,2	0,429	0,3682	4,853	0,0334	0,0633	0,0477	0,0648	0,0158	0,0143	103,0	0,429	0,3686	4,965	0,0345	0,0683	0,0494	0,0672	0,0137	0,0148	105,9
0,376	0,3678	4,753	0,0418	0,0515	0,0575	0,0529	0,0172	0,0157	102,0	0,376	0,3687	4,991	0,0380	0,0626	0,0522	0,0640	0,0156	0,0143	105,6	0,376	0,3690	5,090	0,0389	0,0675	0,0535	0,0664	0,0135	0,0146	108,3
0,333	0,3682	4,868	0,0469	0,0502	0,0626	0,0513	0,0167	0,0156	104,5	0,333	0,3691	5,116	0,0423	0,0619	0,0564	0,0632	0,0155	0,0141	108,0	0,333	0,3694	5,211	0,0431	0,0667	0,0575	0,0657	0,0133	0,0144	110,6
0,250	0,3693	5,173	0,0578	0,0484	0,0722	0,0501	0,0161	0,0144	110,5	0,250	0,3701	5,403	0,0530	0,0596	0,0662	0,0613	0,0149	0,0132	113,7	0,250	0,3704	5,490	0,0536	0,0643	0,0670	0,0638	0,0129	0,0134	116,0
0,200	0,3700	5,382	0,0666	0,0463	0,0800	0,0484	0,0154	0,0133	114,9	0,200	0,3708	5,613	0,0614	0,0576	0,0737	0,0597	0,0144	0,0123	117,9	0,200	0,3711	5,692	0,0618	0,0622	0,0742	0,0623	0,0124	0,0124	120,1
0,167	0,3706	5,538	0,0736	0,0445	0,0859	0,0471	0,0148	0,0123	118,2	0,167	0,3714	5,769	0,0680	0,0559	0,0793	0,0585	0,0140	0,0113	121,1	0,167	0,3718	5,873	0,0690	0,0604	0,0804	0,0609	0,0121	0,0115	123,1
0,143	0,3710	5,659	0,0793	0,0430	0,0906	0,0460	0,0143	0,0113	120,8	0,143	0,3713	5,741	0,0696	0,0545	0,0795	0,0581	0,0136	0,0099	123,6	0,143	0,3721	5,966	0,0736	0,0588	0,0841	0,0600	0,0118	0,0105	125,6
			s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,167							s1 - 3,0 b	arA; s2 - 1	0 barA б	1=0,143													
б2	η _{CRN2s}	E _{CRN2s}	<i>m</i> ₂	<i>m</i> ₃	<i>m</i> ₁₄	<i>m</i> ₁₁	<i>m</i> _{x1}	<i>m</i> _{x2}	t ₁₀	б ₂	η _{CRN2s}	E _{CRN2s}	<i>m</i> ₂	<i>m</i> ₃	<i>m</i> ₁₄	<i>m</i> ₁₁	<i>m</i> _{x1}	<i>m</i> _{x2}	t ₁₀										
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[-[]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[-[]										
0,667	0,3675	4,659	0,0190	0,0766	0,0317	0,0767	0,0128	0,0127	100,0	0,667	0,3677	4,707	0,0208	0,0786	0,0347	0,0760	0,0112	0,0139	101,8										
0,500	0,3685	4,940	0,0269	0,0761	0,0403	0,0754	0,0127	0,0134	105,1	0,500	0,3686	4,978	0,0288	0,0779	0,0431	0,0746	0,0111	0,0144	106,7										
0,429	0,3690	5,091	0,0315	0,0755	0,0451	0,0746	0,0126	0,0135	107,8	0,429	0,3691	5,127	0,0335	0,0772	0,0479	0,0738	0,0110	0,0144	109,4										
0,376	0,3695	5,223	0,0358	0,0748	0,0493	0,0738	0,0125	0,0135	110,3	0,376	0,3696	5,257	0,0379	0,0764	0,0521	0,0731	0,0109	0,0142	111,9										
0,333	0,3699	5,343	0,0399	0,0741	0,0532	0,0731	0,0123	0,0133	112,5	0,333	0,3700	5,3/3	0,0419	0,0755	0,0559	0,0724	0,0108	0,0140	114,0										
0,250	0,3709	5,620	0,0500	0,0718	0,0625	0,0713	0,0120	0,0125	121.7	0,250	0,3710	5,642	0,0520	0,0731	0,0650	0,0705	0,0104	0,0130	122.0										
0,200	0,3710	5,821	0,0579	0,0098	0,0094	0,0098	0,0110	0,0110	121,/	0,200	0,3710	5,639	0,0598	0,0709	0,0750	0,0691	0,0101	0,0120	125,0	1									
0,107	0,3721	5,974	0,0641	0,0665	0,0748	0.0677	0,0113	0,0107	124,7	0,107	0,3722	5,980 6 105	0,0039	0.0675	0,0769	0,0679	0,0099	0,0110	128.2										
0,143	0,3723	0,054	0,0052	0,0005	0,0750	0,0077	0,0111	0,0059	12/,1	0,143	0,3720	0,105	0,0710	0,0075	0,0011	0,0070	0,0050	0,0101	120,2										

Tab. Z2.37 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 3,0 barA, drugi stopień 10 barA w zależności od stopnia eżekcji G₁ dla temperatur kondensatu 130 °C

														100	°C														
			s1 - 6,6 ba	arA; s2 - 6,	,6 barА б	1=0,667							s1 - 6,6 b	arA; s2 - 6	,6 barА б	1=0,500							s1 - 6,6 ba	arA; s2 - 6	,6 barA б	1=0,429			
б2	η _{CRN2s}	ε _{CRN2s}	m ₂	\dot{m}_3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η _{CRN2s}	€ _{CRN2s}	<i>m</i> ₂	m̂ ₃	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3631	3,415	0,0198	0,0362	0,0330	0,0472	0,0242	0,0132	81,6	0,667	0,3639	3,643	0,0185	0,0463	0,0308	0,0571	0,0231	0,0123	86,9	0,667	0,3643	3,746	0,0176	0,0519	0,0293	0,0625	0,0223	0,0117	89,7
0,500	0,3641	3,679	0,0280	0,0360	0,0420	0,0460	0,0240	0,0140	86,9	0,500	0,3648	3,884	0,0260	0,0460	0,0390	0,0560	0,0230	0,0130	91,7	0,500	0,3651	3,988	0,0250	0,0517	0,0374	0,0614	0,0222	0,0125	94,4
0,429	0,3646	3,821	0,0329	0,0356	0,0471	0,0453	0,0238	0,0141	89,8	0,429	0,3653	4,021	0,0306	0,0457	0,0437	0,0554	0,0228	0,0131	94,4	0,429	0,3656	4,120	0,0294	0,0513	0,0420	0,0607	0,0220	0,0126	97,0
0,376	0,3650	3,946	0,0375	0,0352	0,0516	0,0446	0,0235	0,0141	92,4	0,376	0,3657	4,140	0,0349	0,0452	0,0480	0,0547	0,0226	0,0131	96,9	0,376	0,3660	4,235	0,0335	0,0509	0,0460	0,0601	0,0218	0,0126	99,3
0,333	0,3654	4,057	0,0419	0,0347	0,0558	0,0439	0,0232	0,0140	94,8	0,333	0,3660	4,246	0,0389	0,0447	0,0518	0,0541	0,0223	0,0130	99,1	0,333	0,3661	4,258	0,0354	0,0502	0,0472	0,0599	0,0215	0,0118	100,0
0,250	0,3662	4,286	0,0519	0,0332	0,0649	0,0424	0,0221	0,0130	100,0	0,250	0,3661	4,256	0,0426	0,0430	0,0532	0,0538	0,0215	0,0106	100,0	0,250	0,3660	4,225	0,0376	0,0485	0,0470	0,0600	0,0208	0,0094	100,0
0,200	0,3660	4,246	0,0539	0,0319	0,0646	0,0424	0,0213	0,0108	100,0	0,200	0,3660	4,229	0,0442	0,0418	0,0531	0,0539	0,0209	0,0088	100,0	0,200	0,3659	4,203	0,0390	0,0474	0,0469	0,0600	0,0204	0,0078	100,0
0,167	0,3659	4,217	0,0553	0,0310	0,0645	0,0424	0,0207	0,0092	100,0	0,167	0,3659	4,209	0,0454	0,0410	0,0530	0,0539	0,0205	0,0076	100,0	0,167	0,3658	4,188	0,0401	0,0466	0,0468	0,0600	0,0200	0,0067	100,0
0,143	0,3659	4,196	0,0563	0,0303	0,0644	0,0424	0,0202	0,0080	100,0	0,143	0,3659	4,194	0,0463	0,0403	0,0529	0,0539	0,0202	0,0066	100,0	0,143	0,3658	4,176	0,0409	0,0461	0,0467	0,0600	0,0198	0,0058	100,0
			s1 - 6,6 b	arA; s2 - 6,	6 barA б	1=0,367							s1 - 6,6 b	arA; s2 - 6	6 barA б	1=0,333							s1 - 6,6 b	arA; s2 - 6	,6 barA б	1=0,250			
б2	η_{CRN2s}	ε _{CRN2s}	<i>m</i> ₂	\dot{m}_3	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂3	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	<i>m</i> 3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3646	3,837	0,0169	0,0570	0,0282	0,0671	0,0214	0,0113	92,2	0,667	0,3649	3,918	0,0164	0,0617	0,0273	0,0713	0,0206	0,0109	94,5	0,667	0,3655	4,092	0,0152	0,0727	0,0253	0,0808	0,0182	0,0101	99,8
0,500	0,3654	4,075	0,0241	0,0568	0,0361	0,0661	0,0213	0,0120	96,7	0,500	0,3657	4,149	0,0233	0,0614	0,0349	0,0702	0,0205	0,0116	98,9	0,500	0,3655	4,087	0,0170	0,0714	0,0255	0,0807	0,0178	0,0085	100,0
0,429	0,3660	4,244	0,0293	0,0565	0,0418	0,0652	0,0212	0,0126	100,0	0,429	0,3659	4,198	0,0258	0,0608	0,0369	0,0700	0,0203	0,0111	100,0	0,429	0,3655	4,079	0,0178	0,0707	0,0255	0,0807	0,0177	0,0076	100,0
0,376	0,3660	4,230	0,0303	0,0557	0,0417	0,0652	0,0209	0,0114	100,0	0,376	0,3658	4,187	0,0267	0,0600	0,0368	0,0700	0,0200	0,0101	100,0	0,376	0,3654	4,073	0,0185	0,0702	0,0254	0,0807	0,0175	0,0069	100,0
0,333	0,3659	4,218	0,0313	0,0550	0,0417	0,0652	0,0207	0,0104	100,0	0,333	0,3658	4,177	0,0275	0,0594	0,0367	0,0700	0,0198	0,0092	100,0	0,333	0,3654	4,067	0,0191	0,0697	0,0254	0,0807	0,0174	0,0064	100,0
0,250	0,3659	4,191	0,0332	0,0535	0,0415	0,0652	0,0201	0,0083	100,0	0,250	0,3657	4,156	0,0293	0,0580	0,0366	0,0700	0,0193	0,0073	100,0	0,250	0,3654	4,055	0,0203	0,0687	0,0253	0,0808	0,0172	0,0051	100,0
0,200	0,3658	4,174	0,0345	0,0524	0,0414	0,0653	0,0197	0,0069	100,0	0,200	0,3657	4,141	0,0304	0,0571	0,0365	0,0700	0,0190	0,0061	100,0	0,200	0,3654	4,048	0,0211	0,0680	0,0253	0,0808	0,0170	0,0042	100,0
0,167	0,3658	4,161	0,0354	0,0517	0,0414	0,0653	0,0194	0,0059	100,0	0,167	0,3656	4,131	0,0313	0,0564	0,0365	0,0700	0,0188	0,0052	100,0	0,167	0,3653	4,042	0,0217	0,0675	0,0253	0,0808	0,0169	0,0036	100,0
0,143	0,3657	4,152	0,0361	0,0512	0,0413	0,0653	0,0192	0,0052	100,0	0,143	0,3656	4,124	0,0319	0,0559	0,0364	0,0700	0,0186	0,0046	100,0	0,143	0,3653	4,038	0,0221	0,0671	0,0252	0,0808	0,0168	0,0032	100,0
			s1 - 6,6 bi	arA; s2 - 6,	,6 barA б	1=0,200						1	s1 - 6,6 b	arA; s2 - 6	,6 barA б	1=0,167							s1 - 6,6 b	arA; s2 - 6	,6 barA б	1=0,143			
б2	η _{CRN2s}	E _{CRN2s}	<i>m</i> ₂	<i>m</i> ₃	<i>m</i> ₁₄	<i>m</i> ₁₁	<i>m</i> _{x1}	\dot{m}_{x2}	t ₁₀	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	<i>m</i> ₃	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η _{CRN2s}	E _{CRN2s}	<i>m</i> ₂	<i>m</i> ₃	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	["C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3651	3,982	0,0122	0,0779	0,0203	0,0854	0,0156	0,0081	100,0	0,667	0,3649	3,913	0,0067	0,0846	0,0112	0,0942	0,0141	0,0045	100,0	0,667	0,3646	3,847	0,0038	0,0886	0,0063	0,0987	0,0127	0,0025	100,0
0,500	0,3651	3,972	0,0135	0,0768	0,0203	0,0854	0,0154	0,0068	100,0	0,500	0,3649	3,908	0,0074	0,0839	0,0111	0,0942	0,0140	0,0037	100,0	0,500	0,3646	3,844	0,0042	0,0882	0,0063	0,0987	0,0126	0,0021	100,0
0,429	0,3651	3,967	0,0142	0,0762	0,0203	0,0854	0,0152	0,0061	100,0	0,429	0,3649	3,906	0,0078	0,0836	0,0111	0,0942	0,0139	0,0033	100,0	0,429	0,3646	3,843	0,0044	0,0880	0,0063	0,0987	0,0126	0,0019	100,0
0,376	0,3651	3,962	0,0147	0,0758	0,0202	0,0854	0,0152	0,0055	100,0	0,376	0,3648	3,904	0,0081	0,0834	0,0111	0,0942	0,0139	0,0030	100,0	0,376	0,3646	3,842	0,0046	0,0879	0,0063	0,0987	0,0126	0,0017	100,0
0,333	0,3650	3,959	0,0152	0,0754	0,0202	0,0854	0,0151	0,0051	100,0	0,333	0,3648	3,902	0,0083	0,0831	0,0111	0,0942	0,0139	0,0028	100,0	0,333	0,3646	3,841	0,0047	0,0878	0,0063	0,0987	0,0125	0,0016	100,0
0,250	0,3650	3,951	0,0161	0,0745	0,0202	0,0854	0,0149	0,0040	100,0	0,250	0,3648	3,899	0,0089	0,0827	0,0111	0,0942	0,0138	0,0022	100,0	0,250	0,3646	3,839	0,0050	0,0875	0,0063	0,0987	0,0125	0,0013	100,0
0,200	0,3650	3,946	0,0168	0,0740	0,0201	0,0854	0,0148	0,0034	100,0	0,200	0,3648	3,896	0,0092	0,0823	0,0111	0,0942	0,0137	0,0018	100,0	0,200	0,3646	3,838	0,0052	0,0873	0,0063	0,0987	0,0125	0,0010	100,0
0,167	0,3650	3,942	0,0172	0,0736	0,0201	0,0854	0,0147	0,0029	100,0	0,167	0,3648	3,894	0,0095	0,0821	0,0111	0,0942	0,0137	0,0016	100,0	0,167	0,3646	3,837	0,0054	0,0872	0,0063	0,0987	0,0125	0,0009	100,0
0,143	0,3650	3,939	0,0176	0,0733	0,0201	0,0854	0,0147	0,0025	100,0	0,143	0,3648	3,893	0,0097	0,0820	0,0111	0,0942	0,0137	0,0014	100,0	0,143	0,3646	3,837	0,0055	0,0871	0,0063	0,0987	0,0124	0,0008	100,0

Tab. Z2.38 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 6,6 barA w zależności od stopnia eżekcji σ₁ dla temperatur kondensatu 100 °C

														110	°C														
			s1 - 6,6 bi	arA; s2 - 6,	,6 barA б	1=0,667							s1 - 6,6 b	arA; s2 - 6	,6 barA б	1=0,500							s1 - 6,6 ba	arA; s2 - 6,	,6 barA б	1=0,429			
б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3631	3,415	0,0198	0,0362	0,0330	0,0472	0,0242	0,0132	81,6	0,667	0,3639	3,643	0,0185	0,0463	0,0308	0,0571	0,0231	0,0123	86,9	0,667	0,3643	3,746	0,0176	0,0519	0,0293	0,0625	0,0223	0,0117	89,7
0,500	0,3641	3,679	0,0280	0,0360	0,0420	0,0460	0,0240	0,0140	86,9	0,500	0,3648	3,884	0,0260	0,0460	0,0390	0,0560	0,0230	0,0130	91,7	0,500	0,3651	3,988	0,0250	0,0517	0,0374	0,0614	0,0222	0,0125	94,4
0,429	0,3646	3,821	0,0329	0,0356	0,0471	0,0453	0,0238	0,0141	89,8	0,429	0,3653	4,021	0,0306	0,0457	0,0437	0,0554	0,0228	0,0131	94,4	0,429	0,3656	4,120	0,0294	0,0513	0,0420	0,0607	0,0220	0,0126	97,0
0,376	0,3650	3,946	0,0375	0,0352	0,0516	0,0446	0,0235	0,0141	92,4	0,376	0,3657	4,140	0,0349	0,0452	0,0480	0,0547	0,0226	0,0131	96,9	0,376	0,3660	4,235	0,0335	0,0509	0,0460	0,0601	0,0218	0,0126	99,3
0,333	0,3654	4,057	0,0419	0,0347	0,0558	0,0439	0,0232	0,0140	94,8	0,333	0,3660	4,246	0,0389	0,0447	0,0518	0,0541	0,0223	0,0130	99,1	0,333	0,3664	4,339	0,0373	0,0504	0,0498	0,0595	0,0216	0,0124	101,5
0,250	0,3663	4,307	0,0524	0,0332	0,0656	0,0422	0,0222	0,0131	100,4	0,250	0,3669	4,492	0,0489	0,0431	0,0611	0,0525	0,0216	0,0122	104,3	0,250	0,3672	4,581	0,0469	0,0488	0,0587	0,0580	0,0209	0,0117	106,5
0,200	0,3669	4,482	0,0606	0,0318	0,0727	0,0409	0,0212	0,0121	104,4	0,200	0,3675	4,667	0,0566	0,0417	0,0679	0,0512	0,0208	0,0113	108,1	0,200	0,3678	4,754	0,0544	0,0473	0,0653	0,0568	0,0203	0,0109	110,1
0,167	0,3673	4,610	0,0671	0,0306	0,0782	0,0398	0,0204	0,0112	107,5	0,167	0,3678	4,743	0,0611	0,0405	0,0712	0,0506	0,0203	0,0102	110,0	0,167	0,3677	4,724	0,0556	0,0463	0,0649	0,0568	0,0198	0,0093	110,0
0,143	0,3677	4,709	0,0722	0,0295	0,0825	0,0389	0,0197	0,0103	109,9	0,143	0,3677	4,723	0,0622	0,0397	0,0711	0,0506	0,0198	0,0089	110,0	0,143	0,3677	4,708	0,0567	0,0454	0,0648	0,0568	0,0195	0,0081	110,0
			s1 - 6,6 b	arA; s2 - 6,	,6 barA б	1=0,367							s1 - 6,6 b	arA; s2 - 6	,6 barA б	1=0,333							s1 - 6,6 ba	arA; s2 - 6,	,6 barA б	1=0,250			-
б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	π ₃	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	π̀3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3646	3,837	0,0169	0,0570	0,0282	0,0671	0,0214	0,0113	92,2	0,667	0,3649	3,918	0,0164	0,0617	0,0273	0,0713	0,0206	0,0109	94,5	0,667	0,3655	4,092	0,0152	0,0727	0,0253	0,0808	0,0182	0,0101	99,8
0,500	0,3654	4,075	0,0241	0,0568	0,0361	0,0661	0,0213	0,0120	96,7	0,500	0,3657	4,149	0,0233	0,0614	0,0349	0,0702	0,0205	0,0116	98,9	0,500	0,3663	4,306	0,0215	0,0724	0,0323	0,0798	0,0181	0,0108	103,8
0,429	0,3659	4,203	0,0284	0,0564	0,0405	0,0654	0,0212	0,0122	99,3	0,429	0,3661	4,273	0,0274	0,0610	0,0392	0,0696	0,0203	0,0118	101,3	0,429	0,3667	4,423	0,0254	0,0720	0,0362	0,0792	0,0180	0,0109	106,1
0,376	0,3663	4,316	0,0323	0,0559	0,0445	0,0648	0,0210	0,0121	101,5	0,376	0,3665	4,383	0,0312	0,0606	0,0430	0,0690	0,0202	0,0117	103,5	0,376	0,3670	4,526	0,0289	0,0716	0,0397	0,0786	0,0179	0,0109	108,1
0,333	0,3666	4,416	0,0360	0,0554	0,0480	0,0642	0,0208	0,0120	103,5	0,333	0,3669	4,482	0,0349	0,0601	0,0465	0,0684	0,0200	0,0116	105,5	0,333	0,3674	4,620	0,0322	0,0711	0,0430	0,0781	0,0178	0,0107	109,9
0,250	0,3675	4,651	0,0453	0,0538	0,0566	0,0628	0,0202	0,0113	108,4	0,250	0,3677	4,707	0,0437	0,0585	0,0546	0,0671	0,0195	0,0109	110,0	0,250	0,3673	4,606	0,0345	0,0693	0,0431	0,0781	0,0173	0,0086	110,0
0,200	0,3677	4,717	0,0495	0,0524	0,0595	0,0622	0,0197	0,0099	110,0	0,200	0,3676	4,682	0,0457	0,0569	0,0548	0,0667	0,0190	0,0091	113,5	0,200	0,3672	4,588	0,0363	0,0678	0,0435	0,0775	0,0170	0,0073	117,2
0,167	0,3676	4,699	0,0509	0,0514	0,0594	0,0622	0,0193	0,0085	110,0	0,167	0,3675	4,664	0,0471	0,0557	0,0550	0,0665	0,0186	0,0079	116,1	0,167	0,3672	4,577	0,0374	0,0669	0,0437	0,0773	0,0167	0,0062	119,6
0,143	0,3676	4,685	0,0519	0,0506	0,0593	0,0622	0,0190	0,0074	110,0	0,143	0,3675	4,650	0,0482	0,0549	0,0551	0,0663	0,0183	0,0069	118,2	0,143	0,3672	4,569	0,0382	0,0662	0,0437	0,0773	0,0166	0,0055	120,0
			s1 - 6,6 b	arA; s2 - 6,	6 barA б	1=0,200	-						s1 - 6,6 b	arA; s2 - 6	,6 barA б	1=0,167						-	s1 - 6,6 ba	arA; s2 - 6,	6 barA б	1=0,143			
б2	η _{CRN2s}	E _{CRN2s}	<i>m</i> ₂	<i>m</i> 3	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η _{CRN2s}	ε _{CRN2s}	<i>m</i> ₂	<i>m</i> ₃	\dot{m}_{14}	<i>m</i> ₁₁	<i>m</i> _{x1}	\dot{m}_{x2}	t ₁₀	б2	η _{CRN2s}	E _{CRN2s}	<i>m</i> ₂	<i>m</i> 3	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3659	4,190	0,0160	0,0793	0,0267	0,0845	0,0159	0,0107	103,6	0,667	0,3662	4,287	0,0136	0,0872	0,0226	0,0927	0,0145	0,0091	106,6	0,667	0,3664	4,349	0,0131	0,0922	0,0218	0,0967	0,0132	0,0087	108,9
0,500	0,3666	4,392	0,0223	0,0789	0,0334	0,0835	0,0158	0,0111	107,4	0,500	0,3669	4,483	0,0193	0,0870	0,0290	0,0918	0,0145	0,0097	110,0	0,500	0,3666	4,404	0,0158	0,0913	0,0237	0,0964	0,0130	0,0079	110,0
0,429	0,3670	4,503	0,0260	0,0784	0,0371	0,0829	0,0157	0,0112	109,5	0,429	0,3669	4,477	0,0203	0,0861	0,0290	0,0918	0,0144	0,0087	110,0	0,429	0,3666	4,399	0,0166	0,0906	0,0237	0,0964	0,0129	0,0071	110,0
0,376	0,3670	4,521	0,0275	0,0777	0,0379	0,0828	0,0155	0,0104	110,0	0,376	0,3668	4,471	0,0210	0,0854	0,0290	0,0918	0,0142	0,0079	110,0	0,376	0,3666	4,396	0,0172	0,0900	0,0237	0,0964	0,0129	0,0065	110,0
0,333	0,3670	4,513	0,0286	0,0768	0,0381	0,0826	0,0154	0,0095	113,1	0,333	0,3668	4,467	0,0217	0,0849	0,0289	0,0918	0,0141	0,0072	110,0	0,333	0,3666	4,392	0,0178	0,0895	0,0237	0,0964	0,0128	0,0059	110,0
0,250	0,3669	4,496	0,0306	0,0750	0,0382	0,0824	0,0150	0,0076	117,1	0,250	0,3668	4,457	0,0231	0,0836	0,0289	0,0918	0,0139	0,0058	110,0	0,250	0,3665	4,385	0,0189	0,0885	0,0236	0,0964	0,0126	0,0047	110,0
0,200	0,3669	4,485	0,0320	0,0738	0,0384	0,0822	0,0148	0,0064	120,0	0,200	0,3668	4,451	0,0240	0,0828	0,0288	0,0918	0,0138	0,0048	110,0	0,200	0,3665	4,381	0,0197	0,0878	0,0236	0,0964	0,0125	0,0039	110,0
0,167	0,3669	4,478	0,0329	0,0730	0,0383	0,0822	0,0146	0,0055	120,0	0,167	0,3668	4,446	0,0247	0,0822	0,0288	0,0918	0,0137	0,0041	110,0	0,167	0,3665	4,378	0,0202	0,0873	0,0236	0,0964	0,0125	0,0034	110,0
0,143	0,3668	4,472	0,0335	0,0725	0,0383	0,0822	0,0145	0,0048	120,0	0,143	0,3667	4,443	0,0252	0,0818	0,0288	0,0918	0,0136	0,0036	110,0	0,143	0,3665	4,375	0,0206	0,0870	0,0236	0,0964	0,0124	0,0029	110,0

Tab. Z2.39 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 6,6 barA w zależności od stopnia eżekcji σ₁ dla temperatur kondensatu 110 °C

														120	°C														
			s1 - 6,6 bi	arA; s2 - 6,	,6 barA G	1=0,667							s1 - 6,6 b	arA; s2 - 6	,6 barA б	1=0,500							s1 - 6,6 ba	arA; s2 - 6	,6 barA б	1=0,429			
б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б₂	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	\dot{m}_3	<i>m</i> ₁₄	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б₂	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3631	3,415	0,0198	0,0362	0,0330	0,0472	0,0242	0,0132	81,6	0,667	0,3639	3,643	0,0185	0,0463	0,0308	0,0571	0,0231	0,0123	86,9	0,667	0,3643	3,746	0,0176	0,0519	0,0293	0,0625	0,0223	0,0117	89,7
0,500	0,3641	3,679	0,0280	0,0360	0,0420	0,0460	0,0240	0,0140	86,9	0,500	0,3648	3,884	0,0260	0,0460	0,0390	0,0560	0,0230	0,0130	91,7	0,500	0,3651	3,988	0,0250	0,0517	0,0374	0,0614	0,0222	0,0125	94,4
0,429	0,3646	3,821	0,0329	0,0356	0,0471	0,0453	0,0238	0,0141	89,8	0,429	0,3653	4,021	0,0306	0,0457	0,0437	0,0554	0,0228	0,0131	94,4	0,429	0,3656	4,120	0,0294	0,0513	0,0420	0,0607	0,0220	0,0126	97,0
0,376	0,3650	3,946	0,0375	0,0352	0,0516	0,0446	0,0235	0,0141	92,4	0,376	0,3657	4,140	0,0349	0,0452	0,0480	0,0547	0,0226	0,0131	96,9	0,376	0,3660	4,235	0,0335	0,0509	0,0460	0,0601	0,0218	0,0126	99,3
0,333	0,3654	4,057	0,0419	0,0347	0,0558	0,0439	0,0232	0,0140	94,8	0,333	0,3660	4,246	0,0389	0,0447	0,0518	0,0541	0,0223	0,0130	99,1	0,333	0,3664	4,339	0,0373	0,0504	0,0498	0,0595	0,0216	0,0124	101,5
0,250	0,3663	4,307	0,0524	0,0332	0,0656	0,0422	0,0222	0,0131	100,4	0,250	0,3669	4,492	0,0489	0,0431	0,0611	0,0525	0,0216	0,0122	104,3	0,250	0,3672	4,581	0,0469	0,0488	0,0587	0,0580	0,0209	0,0117	106,5
0,200	0,3669	4,482	0,0606	0,0318	0,0727	0,0409	0,0212	0,0121	104,4	0,200	0,3675	4,667	0,0566	0,0417	0,0679	0,0512	0,0208	0,0113	108,1	0,200	0,3678	4,754	0,0544	0,0473	0,0653	0,0568	0,0203	0,0109	110,1
0,167	0,3673	4,610	0,0671	0,0306	0,0782	0,0398	0,0204	0,0112	107,5	0,167	0,3680	4,798	0,0627	0,0404	0,0731	0,0502	0,0202	0,0104	111,0	0,167	0,3683	4,883	0,0603	0,0461	0,0703	0,0558	0,0198	0,0100	112,9
0,143	0,3677	4,709	0,0722	0,0295	0,0825	0,0389	0,0197	0,0103	109,9	0,143	0,3683	4,897	0,0676	0,0393	0,0772	0,0494	0,0197	0,0097	113,3	0,143	0,3686	4,983	0,0651	0,0450	0,0743	0,0550	0,0193	0,0093	115,1
			s1 - 6,6 b	arA; s2 - 6,	6 barA 6	1=0,367							s1 - 6,6 b	arA; s2 - 6	,6 barA б	1=0,333							s1 - 6,6 b	arA; s2 - 6	,6 barA б	1=0,250			
б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3646	3,837	0,0169	0,0570	0,0282	0,0671	0,0214	0,0113	92,2	0,667	0,3649	3,918	0,0164	0,0617	0,0273	0,0713	0,0206	0,0109	94,5	0,667	0,3655	4,092	0,0152	0,0727	0,0253	0,0808	0,0182	0,0101	99,8
0,500	0,3654	4,075	0,0241	0,0568	0,0361	0,0661	0,0213	0,0120	96,7	0,500	0,3657	4,149	0,0233	0,0614	0,0349	0,0702	0,0205	0,0116	98,9	0,500	0,3663	4,306	0,0215	0,0724	0,0323	0,0798	0,0181	0,0108	103,8
0,429	0,3659	4,203	0,0284	0,0564	0,0405	0,0654	0,0212	0,0122	99,3	0,429	0,3661	4,273	0,0274	0,0610	0,0392	0,0696	0,0203	0,0118	101,3	0,429	0,3667	4,423	0,0254	0,0720	0,0362	0,0792	0,0180	0,0109	106,1
0,376	0,3663	4,316	0,0323	0,0559	0,0445	0,0648	0,0210	0,0121	101,5	0,376	0,3665	4,383	0,0312	0,0606	0,0430	0,0690	0,0202	0,0117	103,5	0,376	0,3670	4,526	0,0289	0,0716	0,0397	0,0786	0,0179	0,0109	108,1
0,333	0,3666	4,416	0,0360	0,0554	0,0480	0,0642	0,0208	0,0120	103,5	0,333	0,3669	4,482	0,0349	0,0601	0,0465	0,0684	0,0200	0,0116	105,5	0,333	0,3674	4,620	0,0322	0,0711	0,0430	0,0781	0,0178	0,0107	109,9
0,250	0,3675	4,651	0,0453	0,0538	0,0566	0,0628	0,0202	0,0113	108,4	0,250	0,3677	4,712	0,0438	0,0585	0,0548	0,0670	0,0195	0,0110	110,1	0,250	0,3681	4,821	0,0400	0,0695	0,0501	0,0769	0,0174	0,0100	113,8
0,200	0,3681	4,823	0,0525	0,0524	0,0630	0,0616	0,0197	0,0105	111,9	0,200	0,3683	4,880	0,0508	0,0570	0,0610	0,0659	0,0190	0,0102	113,5	0,200	0,3687	4,994	0,0469	0,0681	0,0562	0,0757	0,0170	0,0094	117,2
0,167	0,3685	4,951	0,0582	0,0511	0,0679	0,0606	0,0192	0,0097	114,6	0,167	0,3687	5,007	0,0563	0,0558	0,0657	0,0650	0,0186	0,0094	116,1	0,167	0,3691	5,115	0,0520	0,0668	0,0606	0,0749	0,0167	0,0087	119,6
0,143	0,3689	5,050	0,0628	0,0500	0,0718	0,0598	0,0188	0,0090	116,7	0,143	0,3691	5,105	0,0608	0,0547	0,0695	0,0642	0,0182	0,0087	118,2	0,143	0,3691	5,125	0,0536	0,0659	0,0612	0,0748	0,0165	0,0077	120,0
			s1 - 6,6 bi	arA; s2 - 6,	,6 barA G	1=0,200	1				1	1	s1 - 6,6 b	arA; s2 - 6	,6 barA б	1=0,167							s1 - 6,6 bi	arA; s2 - 6	,6 barA б	1=0,143			
б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m ₃	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	<i>m</i> ₃	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η_{CRN2s}	E _{CRN2s}	\dot{m}_2	<i>m</i> 3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3659	4,190	0,0160	0,0793	0,0267	0,0845	0,0159	0,0107	103,6	0,667	0,3662	4,287	0,0136	0,0872	0,0226	0,0927	0,0145	0,0091	106,6	0,667	0,3664	4,349	0,0131	0,0922	0,0218	0,0967	0,0132	0,0087	108,9
0,500	0,3666	4,392	0,0223	0,0789	0,0334	0,0835	0,0158	0,0111	107,4	0,500	0,3669	4,483	0,0194	0,0869	0,0290	0,0918	0,0145	0,0097	110,2	0,500	0,3671	4,538	0,0186	0,0920	0,0279	0,0958	0,0131	0,0093	112,4
0,429	0,3670	4,503	0,0260	0,0784	0,0371	0,0829	0,0157	0,0112	109,5	0,429	0,3673	4,590	0,0228	0,0866	0,0326	0,0912	0,0144	0,0098	112,2	0,429	0,3674	4,639	0,0219	0,0916	0,0313	0,0953	0,0131	0,0094	114,2
0,376	0,3673	4,601	0,0294	0,0779	0,0404	0,0824	0,0156	0,0111	111,4	0,376	0,3676	4,685	0,0260	0,0861	0,0357	0,0907	0,0144	0,0098	114,0	0,376	0,3678	4,733	0,0250	0,0911	0,0344	0,0947	0,0130	0,0094	115,6
0,333	0,3676	4,692	0,0327	0,0773	0,0436	0,0819	0,0155	0,0109	113,1	0,333	0,3679	4,770	0,0289	0,0856	0,0386	0,0902	0,0143	0,0096	115,6	0,333	0,3681	4,816	0,0279	0,0906	0,0372	0,0943	0,0129	0,0093	117,5
0,250	0,3683	4,894	0,0405	0,0756	0,0506	0,0806	0,0151	0,0101	117,1	0,250	0,3686	4,969	0,0363	0,0841	0,0454	0,0890	0,0140	0,0091	119,3	0,250	0,3685	4,946	0,0333	0,0891	0,0416	0,0935	0,0127	0,0083	120,0
0,200	0,3689	5,045	0,0466	0,0741	0,0559	0,0796	0,0148	0,0093	120,0	0,200	0,3687	4,997	0,0388	0,0828	0,0466	0,0888	0,0138	0,0078	120,0	0,200	0,3685	4,938	0,0347	0,0879	0,0416	0,0935	0,0126	0,0069	120,0
0,167	0,3687	5,015	0,0474	0,0730	0,0553	0,0797	0,0146	0,0079	120,0	0,167	0,3687	4,989	0,0399	0,0818	0,0465	0,0888	0,0136	0,0066	120,0	0,167	0,3685	4,932	0,0356	0,0870	0,0416	0,0935	0,0124	0,0059	120,0
0,143	0,3687	5,007	0,0483	0,0722	0,0553	0,0797	0,0144	0,0069	120,0	0,143	0,3686	4,984	0,0407	0,0811	0,0465	0,0888	0,0135	0,0058	120,0	0,143	0,3684	4,927	0,0363	0,0864	0,0415	0,0935	0,0123	0,0052	120,0

Tab. Z2.40 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 6,6 barA w zależności od stopnia eżekcji σ₁ dla temperatur kondensatu 120 °C

														130	°C														
			s1 - 6,6 bi	arA; s2 - 6,	,6 barA G	1=0,667							s1 - 6,6 b	arA; s2 - 6	,6 barA б	1=0,500							s1 - 6,6 ba	arA; s2 - 6	,6 barA б	1=0,429			
б2	η _{CRN2s}	ε _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{14}	<i>m</i> ₁₁	<i>m</i> _{x1}	<i>m</i> _{x2}	t ₁₀	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	\dot{m}_3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	<i>ṁ</i> 3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3631	3,415	0,0198	0,0362	0,0330	0,0472	0,0242	0,0132	81,6	0,667	0,3639	3,643	0,0185	0,0463	0,0308	0,0571	0,0231	0,0123	86,9	0,667	0,3643	3,746	0,0176	0,0519	0,0293	0,0625	0,0223	0,0117	89,7
0,500	0,3641	3,679	0,0280	0,0360	0,0420	0,0460	0,0240	0,0140	86,9	0,500	0,3648	3,884	0,0260	0,0460	0,0390	0,0560	0,0230	0,0130	91,7	0,500	0,3651	3,988	0,0250	0,0517	0,0374	0,0614	0,0222	0,0125	94,4
0,429	0,3646	3,821	0,0329	0,0356	0,0471	0,0453	0,0238	0,0141	89,8	0,429	0,3653	4,021	0,0306	0,0457	0,0437	0,0554	0,0228	0,0131	94,4	0,429	0,3656	4,120	0,0294	0,0513	0,0420	0,0607	0,0220	0,0126	97,0
0,376	0,3650	3,946	0,0375	0,0352	0,0516	0,0446	0,0235	0,0141	92,4	0,376	0,3657	4,140	0,0349	0,0452	0,0480	0,0547	0,0226	0,0131	96,9	0,376	0,3660	4,235	0,0335	0,0509	0,0460	0,0601	0,0218	0,0126	99,3
0,333	0,3654	4,057	0,0419	0,0347	0,0558	0,0439	0,0232	0,0140	94,8	0,333	0,3660	4,246	0,0389	0,0447	0,0518	0,0541	0,0223	0,0130	99,1	0,333	0,3664	4,339	0,0373	0,0504	0,0498	0,0595	0,0216	0,0124	101,5
0,250	0,3663	4,307	0,0524	0,0332	0,0656	0,0422	0,0222	0,0131	100,4	0,250	0,3669	4,492	0,0489	0,0431	0,0611	0,0525	0,0216	0,0122	104,3	0,250	0,3672	4,581	0,0469	0,0488	0,0587	0,0580	0,0209	0,0117	106,5
0,200	0,3669	4,482	0,0606	0,0318	0,0727	0,0409	0,0212	0,0121	104,4	0,200	0,3675	4,667	0,0566	0,0417	0,0679	0,0512	0,0208	0,0113	108,1	0,200	0,3678	4,754	0,0544	0,0473	0,0653	0,0568	0,0203	0,0109	110,1
0,167	0,3673	4,610	0,0671	0,0306	0,0782	0,0398	0,0204	0,0112	107,5	0,167	0,3680	4,798	0,0627	0,0404	0,0731	0,0502	0,0202	0,0104	111,0	0,167	0,3683	4,883	0,0603	0,0461	0,0703	0,0558	0,0198	0,0100	112,9
0,143	0,3677	4,709	0,0722	0,0295	0,0825	0,0389	0,0197	0,0103	109,9	0,143	0,3683	4,897	0,0676	0,0393	0,0772	0,0494	0,0197	0,0097	113,3	0,143	0,3686	4,983	0,0651	0,0450	0,0743	0,0550	0,0193	0,0093	115,1
			s1 - 6,6 ba	arA; s2 - 6,	,6 barA G	1=0,367					-		s1 - 6,6 b	arA; s2 - 6	,6 barA б	1=0,333							s1 - 6,6 b	arA; s2 - 6	,6 barA б	1=0,250		-	
б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	<i>m</i> _{x2}	t10	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	τh ₃	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	<i>m</i> 3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3646	3,837	0,0169	0,0570	0,0282	0,0671	0,0214	0,0113	92,2	0,667	0,3649	3,918	0,0164	0,0617	0,0273	0,0713	0,0206	0,0109	94,5	0,667	0,3655	4,092	0,0152	0,0727	0,0253	0,0808	0,0182	0,0101	99,8
0,500	0,3654	4,075	0,0241	0,0568	0,0361	0,0661	0,0213	0,0120	96,7	0,500	0,3657	4,149	0,0233	0,0614	0,0349	0,0702	0,0205	0,0116	98,9	0,500	0,3663	4,306	0,0215	0,0724	0,0323	0,0798	0,0181	0,0108	103,8
0,429	0,3659	4,203	0,0284	0,0564	0,0405	0,0654	0,0212	0,0122	99,3	0,429	0,3661	4,273	0,0274	0,0610	0,0392	0,0696	0,0203	0,0118	101,3	0,429	0,3667	4,423	0,0254	0,0720	0,0362	0,0792	0,0180	0,0109	106,1
0,376	0,3663	4,316	0,0323	0,0559	0,0445	0,0648	0,0210	0,0121	101,5	0,376	0,3665	4,383	0,0312	0,0606	0,0430	0,0690	0,0202	0,0117	103,5	0,376	0,3670	4,526	0,0289	0,0716	0,0397	0,0786	0,0179	0,0109	108,1
0,333	0,3666	4,416	0,0360	0,0554	0,0480	0,0642	0,0208	0,0120	103,5	0,333	0,3669	4,482	0,0349	0,0601	0,0465	0,0684	0,0200	0,0116	105,5	0,333	0,3674	4,620	0,0322	0,0711	0,0430	0,0781	0,0178	0,0107	109,9
0,250	0,3675	4,651	0,0453	0,0538	0,0566	0,0628	0,0202	0,0113	108,4	0,250	0,3677	4,712	0,0438	0,0585	0,0548	0,0670	0,0195	0,0110	110,1	0,250	0,3681	4,821	0,0400	0,0695	0,0501	0,0769	0,0174	0,0100	113,8
0,200	0,3681	4,823	0,0525	0,0524	0,0630	0,0616	0,0197	0,0105	111,9	0,200	0,3683	4,880	0,0508	0,0570	0,0610	0,0659	0,0190	0,0102	113,5	0,200	0,3687	4,994	0,0469	0,0681	0,0562	0,0757	0,0170	0,0094	117,2
0,167	0,3685	4,951	0,0582	0,0511	0,0679	0,0606	0,0192	0,0097	114,6	0,167	0,3687	5,007	0,0563	0,0558	0,0657	0,0650	0,0186	0,0094	116,1	0,167	0,3691	5,115	0,0520	0,0668	0,0606	0,0749	0,0167	0,0087	119,6
0,143	0,3689	5,050	0,0628	0,0500	0,0718	0,0598	0,0188	0,0090	116,7	0,143	0,3691	5,105	0,0608	0,0547	0,0695	0,0642	0,0182	0,0087	118,2	0,143	0,3694	5,210	0,0561	0,0658	0,0641	0,0742	0,0164	0,0080	121,5
			s1 - 6,6 bi	arA; s2 - 6,	,6 barA 6	1=0,200	1				1	1	s1 - 6,6 b	arA; s2 - 6	6 barA б	1=0,167							s1 - 6,6 bi	arA; s2 - 6	,6 barA б	1=0,143		1	
б2	η_{CRN2s}	ε _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	m ₃	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	<i>m</i> 3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3659	4,190	0,0160	0,0793	0,0267	0,0845	0,0159	0,0107	103,6	0,667	0,3662	4,287	0,0136	0,0872	0,0226	0,0927	0,0145	0,0091	106,6	0,667	0,3664	4,349	0,0131	0,0922	0,0218	0,0967	0,0132	0,0087	108,9
0,500	0,3666	4,392	0,0223	0,0789	0,0334	0,0835	0,0158	0,0111	107,4	0,500	0,3669	4,483	0,0194	0,0869	0,0290	0,0918	0,0145	0,0097	110,2	0,500	0,3671	4,538	0,0186	0,0920	0,0279	0,0958	0,0131	0,0093	112,4
0,429	0,3670	4,503	0,0260	0,0784	0,0371	0,0829	0,0157	0,0112	109,5	0,429	0,3673	4,590	0,0228	0,0866	0,0326	0,0912	0,0144	0,0098	112,2	0,429	0,3674	4,639	0,0219	0,0916	0,0313	0,0953	0,0131	0,0094	114,2
0,376	0,3673	4,601	0,0294	0,0779	0,0404	0,0824	0,0156	0,0111	111,4	0,376	0,3676	4,685	0,0260	0,0861	0,0357	0,0907	0,0144	0,0098	114,0	0,376	0,3678	4,733	0,0250	0,0911	0,0344	0,0947	0,0130	0,0094	115,6
0,333	0,3676	4,692	0,0327	0,0773	0,0436	0,0819	0,0155	0,0109	113,1	0,333	0,3679	4,770	0,0289	0,0856	0,0386	0,0902	0,0143	0,0096	115,6	0,333	0,3681	4,816	0,0279	0,0906	0,0372	0,0943	0,0129	0,0093	117,5
0,250	0,3683	4,894	0,0405	0,0756	0,0506	0,0806	0,0151	0,0101	117,1	0,250	0,3686	4,969	0,0363	0,0841	0,0454	0,0890	0,0140	0,0091	119,3	0,250	0,3687	5,008	0,0349	0,0891	0,0437	0,0931	0,0127	0,0087	121,1
0,200	0,3689	5,045	0,0466	0,0741	0,0559	0,0796	0,0148	0,0093	120,0	0,200	0,3691	5,114	0,0420	0,0827	0,0504	0,0881	0,0138	0,0084	122,1	0,200	0,3692	5,149	0,0404	0,0878	0,0485	0,0922	0,0125	0,0081	123,7
0,167	0,3693	5,159	0,0515	0,0728	0,0600	0,0788	0,0146	0,0086	122,2	0,167	0,3695	5,225	0,0465	0,0815	0,0543	0,0874	0,0136	0,0078	124,2	0,167	0,3696	5,256	0,0447	0,0866	0,0522	0,0915	0,0124	0,0075	125,7
0,143	0,3696	5,249	0,0554	0,0717	0,0633	0,0782	0,0143	0,0079	124,0	0,143	0,3698	5,311	0,0502	0,0805	0,0573	0,0868	0,0134	0,0072	125,8	0,143	0,3699	5,339	0,0482	0,0856	0,0551	0,0910	0,0122	0,0069	127,3

Tab. Z2.41 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 6,6 barA w zależności od stopnia eżekcji G₁ dla temperatur kondensatu 130 °C

														10	0 °C														
			s1 - 6,6	barA; s2 -	10 barA	б1=0,667							s1 - 6,6	barA; s2 -	10 barA 6	51=0,500							s1 - 6,6	barA; s2 -	10 barA 6	51=0,429			
б2	η _{CRN2s}	ε _{CRN2s}	m̂2	m ₃	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η _{CRN2s}	ε _{crn2s}	\dot{m}_2	m̂ ₃	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η _{CRN2s}	ε _{CRN2s}	m ₂	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3631	3,420	0,0218	0,0367	0,0363	0,0467	0,0245	0,0145	83,9	0,667	0,3640	3,654	0,0204	0,0469	0,0341	0,0567	0,0234	0,0136	89,2	0,667	0,3644	3,771	0,0198	0,0526	0,0330	0,0620	0,0226	0,0132	92,1
0,500	0,3640	3,664	0,0308	0,0365	0,0462	0,0454	0,0243	0,0154	89,8	0,500	0,3648	3,888	0,0290	0,0466	0,0434	0,0554	0,0233	0,0145	94,7	0,500	0,3652	3,997	0,0280	0,0523	0,0419	0,0607	0,0224	0,0140	97,5
0,429	0,3645	3,794	0,0362	0,0360	0,0518	0,0445	0,0240	0,0156	93,1	0,429	0,3652	4,014	0,0341	0,0461	0,0488	0,0545	0,0231	0,0146	97,9	0,429	0,3655	4,097	0,0324	0,0517	0,0463	0,0600	0,0222	0,0139	100,0
0,376	0,3648	3,904	0,0413	0,0355	0,0568	0,0437	0,0237	0,0155	96,1	0,376	0,3655	4,089	0,0380	0,0455	0,0523	0,0540	0,0227	0,0143	100,0	0,376	0,3654	4,073	0,0335	0,0508	0,0461	0,0601	0,0218	0,0126	100,0
0,333	0,3652	4,002	0,0461	0,0350	0,0614	0,0429	0,0233	0,0154	98,8	0,333	0,3654	4,064	0,0391	0,0447	0,0522	0,0540	0,0223	0,0130	100,0	0,333	0,3654	4,052	0,0345	0,0501	0,0460	0,0601	0,0215	0,0115	100,0
0,250	0,3651	3,984	0,0505	0,0331	0,0632	0,0426	0,0221	0,0126	100,0	0,250	0,3652	4,009	0,0415	0,0429	0,0519	0,0540	0,0215	0,0104	100,0	0,250	0,3652	4,007	0,0366	0,0485	0,0458	0,0601	0,0208	0,0092	100,0
0,200	0,3650	3,934	0,0524	0,0319	0,0629	0,0426	0,0212	0,0105	100,0	0,200	0,3651	3,973	0,0431	0,0418	0,0517	0,0540	0,0209	0,0086	100,0	0,200	0,3651	3,978	0,0380	0,0474	0,0456	0,0601	0,0203	0,0076	100,0
0,167	0,3648	3,899	0,0537	0,0310	0,0627	0,0426	0,0206	0,0090	100,0	0,167	0,3650	3,948	0,0442	0,0409	0,0515	0,0540	0,0205	0,0074	100,0	0,167	0,3650	3,957	0,0390	0,0466	0,0455	0,0601	0,0200	0,0065	100,0
0,143	0,3647	3,872	0,0547	0,0303	0,0625	0,0426	0,0202	0,0078	100,0	0,143	0,3649	3,928	0,0450	0,0403	0,0514	0,0541	0,0202	0,0064	100,0	0,143	0,3650	3,941	0,0397	0,0461	0,0454	0,0601	0,0198	0,0057	100,0
			s1 - 6,6	barA; s2 -	10 barA	б1=0,367							s1 - 6,6	barA; s2 -	10 barA 6	51=0,333							s1 - 6,6	barA; s2 -	10 barA 6	51=0,250			
б2	η_{CRN2s}	ε _{crn2s}	\dot{m}_2	m̂3	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η _{CRN2s}	ε _{crn2s}	\dot{m}_2	\dot{m}_3	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η _{CRN2s}	ε _{crn2s}	<i>m</i> ₂	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3647	3,868	0,0192	0,0577	0,0320	0,0666	0,0217	0,0128	94,7	0,667	0,3650	3,954	0,0187	0,0624	0,0311	0,0708	0,0208	0,0125	97,0	0,667	0,3652	4,013	0,0151	0,0727	0,0251	0,0808	0,0182	0,0100	100,0
0,500	0,3655	4,081	0,0269	0,0573	0,0404	0,0654	0,0215	0,0135	99,7	0,500	0,3654	4,068	0,0241	0,0616	0,0361	0,0700	0,0205	0,0120	100,0	0,500	0,3651	3,988	0,0166	0,0713	0,0250	0,0808	0,0178	0,0083	100,0
0,429	0,3654	4,073	0,0286	0,0564	0,0409	0,0653	0,0212	0,0123	100,0	0,429	0,3654	4,048	0,0252	0,0606	0,0360	0,0701	0,0202	0,0108	100,0	0,429	0,3651	3,975	0,0174	0,0706	0,0249	0,0808	0,0177	0,0075	100,0
0,376	0,3654	4,053	0,0296	0,0556	0,0408	0,0653	0,0209	0,0111	100,0	0,376	0,3653	4,031	0,0261	0,0599	0,0359	0,0701	0,0200	0,0098	100,0	0,376	0,3651	3,965	0,0180	0,0701	0,0248	0,0808	0,0175	0,0068	100,0
0,333	0,3653	4,036	0,0305	0,0549	0,0407	0,0653	0,0206	0,0102	100,0	0,333	0,3652	4,017	0,0269	0,0593	0,0358	0,0701	0,0198	0,0090	100,0	0,333	0,3650	3,957	0,0186	0,0696	0,0248	0,0808	0,0174	0,0062	100,0
0,250	0,3652	3,999	0,0324	0,0534	0,0404	0,0654	0,0201	0,0081	100,0	0,250	0,3651	3,986	0,0285	0,0579	0,0357	0,0701	0,0193	0,0071	100,0	0,250	0,3650	3,938	0,0197	0,0686	0,0247	0,0808	0,0172	0,0049	100,0
0,200	0,3651	3,974	0,0336	0,0524	0,0403	0,0654	0,0197	0,0067	100,0	0,200	0,3651	3,966	0,0296	0,0570	0,0355	0,0701	0,0190	0,0059	100,0	0,200	0,3649	3,926	0,0205	0,0680	0,0246	0,0808	0,0170	0,0041	100,0
0,167	0,3650	3,957	0,0345	0,0517	0,0402	0,0654	0,0194	0,0057	100,0	0,167	0,3650	3,951	0,0304	0,0564	0,0355	0,0701	0,0188	0,0051	100,0	0,167	0,3649	3,917	0,0211	0,0675	0,0246	0,0808	0,0169	0,0035	100,0
0,143	0,3650	3,944	0,0351	0,0512	0,0401	0,0654	0,0192	0,0050	100,0	0,143	0,3650	3,941	0,0310	0,0559	0,0354	0,0701	0,0186	0,0044	100,0	0,143	0,3649	3,911	0,0215	0,0671	0,0245	0,0808	0,0168	0,0031	100,0
			s1 - 6,6	barA; s2 -	10 barA	б1=0,200							s1 - 6,6	barA; s2 -	10 barA 6	51=0,167							s1 - 6,6	barA; s2 -	10 barA 6	51=0,143			
б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	m̂3	\dot{m}_{14}	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б2	η _{CRN2s}	E _{CRN2s}	\dot{m}_2	\dot{m}_3	<i>m</i> ₁₄	<i>m</i> ₁₁	\dot{m}_{x1}	\dot{m}_{x2}	t ₁₀	б₂	η _{CRN2s}	ε _{CRN2s}	<i>m</i> ₂	\dot{m}_3	\dot{m}_{14}	\dot{m}_{11}	\dot{m}_{x1}	<i>m</i> _{x2}	t ₁₀
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[°C]
0,667	0,3649	3,911	0,0120	0,0778	0,0199	0,0854	0,0156	0,0080	100,0	0,667	0,3647	3,874	0,0066	0,0845	0,0110	0,0942	0,0141	0,0044	100,0	0,667	0,3646	3,824	0,0037	0,0886	0,0062	0,0987	0,0127	0,0025	100,0
0,500	0,3648	3,893	0,0132	0,0767	0,0198	0,0854	0,0153	0,0066	100,0	0,500	0,3647	3,865	0,0073	0,0839	0,0109	0,0942	0,0140	0,0036	100,0	0,500	0,3646	3,820	0,0041	0,0882	0,0062	0,0987	0,0126	0,0021	100,0
0,429	0,3648	3,884	0,0139	0,0762	0,0198	0,0854	0,0152	0,0059	100,0	0,429	0,3647	3,861	0,0076	0,0836	0,0109	0,0942	0,0139	0,0033	100,0	0,429	0,3645	3,817	0,0043	0,0880	0,0062	0,0987	0,0126	0,0019	100,0
0,376	0,3648	3,877	0,0144	0,0757	0,0198	0,0855	0,0151	0,0054	100,0	0,376	0,3647	3,857	0,0079	0,0833	0,0109	0,0942	0,0139	0,0030	100,0	0,376	0,3645	3,815	0,0045	0,0879	0,0062	0,0987	0,0126	0,0017	100,0
0,333	0,3647	3,871	0,0148	0,0753	0,0197	0,0855	0,0151	0,0049	100,0	0,333	0,3647	3,854	0,0081	0,0831	0,0108	0,0943	0,0139	0,0027	100,0	0,333	0,3645	3,814	0,0046	0,0877	0,0062	0,0987	0,0125	0,0015	100,0
0,250	0,3647	3,858	0,0157	0,0745	0,0196	0,0855	0,0149	0,0039	100,0	0,250	0,3646	3,847	0,0086	0,0826	0,0108	0,0943	0,0138	0,0022	100,0	0,250	0,3645	3,810	0,0049	0,0875	0,0061	0,0987	0,0125	0,0012	100,0
0,200	0,3647	3,849	0,0163	0,0739	0,0196	0,0855	0,0148	0,0033	100,0	0,200	0,3646	3,843	0,0090	0,0823	0,0108	0,0943	0,0137	0,0018	100,0	0,200	0,3645	3,808	0,0051	0,0873	0,0061	0,0987	0,0125	0,0010	100,0
0,167	0,3646	3,843	0,0168	0,0736	0,0196	0,0855	0,0147	0,0028	100,0	0,167	0,3646	3,840	0,0092	0,0821	0,0108	0,0943	0,0137	0,0015	100,0	0,167	0,3645	3,806	0,0052	0,0872	0,0061	0,0987	0,0125	0,0009	100,0
0,143	0,3646	3,838	0,0171	0,0733	0,0195	0,0855	0,0147	0,0024	100,0	0,143	0,3646	3,838	0,0094	0,0819	0,0107	0,0943	0,0137	0,0013	100,0	0,143	0,3645	3,805	0,0053	0,0871	0,0061	0,0987	0,0124	0,0008	100,0

Tab. Z2.42 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 10 barA w zależności od stopnia eżekcji G₁ dla temperatur kondensatu 100 °C
	110 °C																												
			s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,667							s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,500							s1 - 6,6 b	arA; s2 - 1	0 barA б1	=0,429			
б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C
0,667	0,3631	3,420	0,0218	0,0367	0,0363	0,0467	0,0245	0,0145	83,9	0,667	0,3640	3,654	0,0204	0,0469	0,0341	0,0567	0,0234	0,0136	89,2	0,667	0,3644	3,771	0,0198	0,0526	0,0330	0,0620	0,0226	0,0132	92,1
0,500	0,3640	3,664	0,0308	0,0365	0,0462	0,0454	0,0243	0,0154	89,8	0,500	0,3648	3,888	0,0290	0,0466	0,0434	0,0554	0,0233	0,0145	94,7	0,500	0,3652	3,997	0,0280	0,0523	0,0419	0,0607	0,0224	0,0140	97,5
0,429	0,3645	3,794	0,0362	0,0360	0,0518	0,0445	0,0240	0,0156	93,1	0,429	0,3652	4,014	0,0341	0,0461	0,0488	0,0545	0,0231	0,0146	97,9	0,429	0,3656	4,124	0,0330	0,0518	0,0472	0,0599	0,0222	0,0142	100,5
0,376	0,3648	3,904	0,0413	0,0355	0,0568	0,0437	0,0237	0,0155	96,1	0,376	0,3656	4,121	0,0389	0,0456	0,0535	0,0538	0,0228	0,0146	100,7	0,376	0,3660	4,230	0,0376	0,0513	0,0518	0,0591	0,0220	0,0142	103,2
0,333	0,3652	4,002	0,0461	0,0350	0,0614	0,0429	0,0233	0,0154	98,8	0,333	0,3660	4,218	0,0434	0,0450	0,0579	0,0530	0,0225	0,0145	103,2	0,333	0,3663	4,324	0,0420	0,0507	0,0560	0,0584	0,0217	0,0140	105,7
0,250	0,3660	4,222	0,0580	0,0332	0,0725	0,0408	0,0221	0,0145	105,2	0,250	0,3667	4,436	0,0547	0,0431	0,0684	0,0510	0,0216	0,0137	109,3	0,250	0,3668	4,470	0,0508	0,0488	0,0635	0,0570	0,0209	0,0127	110,0
0,200	0,3665	4,374	0,0673	0,0316	0,0808	0,0391	0,0210	0,0135	109,9	0,200	0,3667	4,422	0,0579	0,0416	0,0694	0,0508	0,0208	0,0116	110,0	0,200	0,3667	4,429	0,0527	0,0473	0,0632	0,0570	0,0203	0,0105	110,0
0,167	0,3663	4,329	0,0691	0,0304	0,0806	0,0392	0,0203	0,0115	110,0	0,167	0,3665	4,387	0,0593	0,0405	0,0692	0,0508	0,0202	0,0099	110,0	0,167	0,3666	4,400	0,0541	0,0462	0,0631	0,0571	0,0198	0,0090	110,0
0,143	0,3662	4,295	0,0704	0,0295	0,0804	0,0392	0,0197	0,0101	110,0	0,143 0,3665 4,361 0,0604 0,0397 0,0691 0,0509 0,0198 0,0086 110,0									<u>)</u> 0,143 0,3665 4,378 0,0551 0,0454 0,0629 0,0571 0,0195 0,0079 110,0										
s1 - 6,6 barA; s2 - 10 barA 61=0,367													s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,333				s1 - 6,6 barA; s2 - 10 barA б1=0,250									
б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C
0,667	0,3647	3,868	0,0192	0,0577	0,0320	0,0666	0,0217	0,0128	94,7	0,667	0,3650	3,954	0,0187	0,0624	0,0311	0,0708	0,0208	0,0125	97,0	0,667	0,3657	4,138	0,0176	0,0735	0,0293	0,0802	0,0184	0,0117	102,4
0,500	0,3655	4,081	0,0269	0,0573	0,0404	0,0654	0,0215	0,0135	99,7	0,500	0,3658	4,175	0,0265	0,0621	0,0398	0,0695	0,0207	0,0133	102,1	0,500	0,3664	4,349	0,0250	0,0732	0,0375	0,0790	0,0183	0,0125	107,2
0,429	0,3659	4,215	0,0321	0,0569	0,0459	0,0645	0,0214	0,0138	102,9	0,429	0,3662	4,294	0,0313	0,0616	0,0447	0,0687	0,0205	0,0134	105,0	0,429	0,3668	4,462	0,0295	0,0727	0,0421	0,0782	0,0182	0,0126	109,9
0,376	0,3663	4,319	0,0366	0,0564	0,0503	0,0638	0,0212	0,0138	105,5	0,376	0,3666	4,397	0,0357	0,0610	0,0491	0,0680	0,0203	0,0134	107,5	0,376	0,3668	4,450	0,0307	0,0718	0,0422	0,0782	0,0179	0,0115	110,0
0,333	0,3666	4,413	0,0409	0,0557	0,0545	0,0631	0,0210	0,0136	107,9	0,333	0,3669	4,492	0,0399	0,0604	0,0532	0,0672	0,0201	0,0133	109,9	0,333	0,3667	4,436	0,0316	0,0710	0,0421	0,0782	0,0177	0,0105	110,0
0,250	0,3668	4,463	0,0464	0,0538	0,0580	0,0624	0,0202	0,0116	110,0	0,250	0,3668	4,451	0,0425	0,0584	0,0531	0,0672	0,0195	0,0106	110,0	0,250	0,3666	4,404	0,0335	0,0693	0,0419	0,0782	0,0173	0,0084	110,0
0,200	0,3667	4,428	0,0482	0,0524	0,0578	0,0624	0,0197	0,0096	110,0	0,200	0,3667	4,420	0,0441	0,0571	0,0530	0,0673	0,0190	0,0088	110,0	0,200	0,3665	4,383	0,0348	0,0682	0,0418	0,0782	0,0170	0,0070	110,0
0,167	0,3666	4,403	0,0494	0,0514	0,0577	0,0625	0,0193	0,0082	110,0	0,167	0,3666	4,399	0,0453	0,0561	0,0528	0,0673	0,0187	0,0075	110,0	0,167	0,3665	4,368	0,0358	0,0674	0,0417	0,0782	0,0168	0,0060	110,0
0,143	0,3665	4,384	0,0504	0,0506	0,0576	0,0625	0,0190	0,0072	110,0	0,143	0,3665	4,383	0,0462	0,0554	0,0528	0,0673	0,0185	0,0066	110,0	0,143	0,3664	4,357	0,0365	0,0668	0,0417	0,0783	0,0167	0,0052	110,0
			s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,200			1			-	s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,167							s1 - 6,6 b	arA; s2 - 1	0 barA б	L=0,143			
б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C
0,667	0,3660	4,234	0,0185	0,0802	0,0309	0,0839	0,0160	0,0124	106,3	0,667	0,3664	4,348	0,0162	0,0882	0,0270	0,0921	0,0147	0,0108	109,3	0,667	0,3663	4,329	0,0140	0,0926	0,0233	0,0965	0,0132	0,0093	110,0
0,500	0,3666	4,389	0,0248	0,0794	0,0372	0,0829	0,0159	0,0124	110,0	0,500	0,3664	4,359	0,0187	0,0868	0,0280	0,0919	0,0145	0,0093	110,0	0,500	0,3663	4,311	0,0155	0,0912	0,0232	0,0965	0,0130	0,0077	110,0
0,429	0,3665	4,372	0,0259	0,0784	0,0371	0,0829	0,0157	0,0111	110,0	0,429	0,3664	4,347	0,0196	0,0860	0,0280	0,0919	0,0143	0,0084	110,0	0,429	0,3662	4,302	0,0162	0,0905	0,0232	0,0965	0,0129	0,0070	110,0
0,376	0,3664	4,359	0,0269	0,0775	0,0370	0,0829	0,0155	0,0101	110,0	0,376	0,3664	4,338	0,0203	0,0853	0,0279	0,0919	0,0142	0,0076	110,0	0,376	0,3662	4,294	0,0168	0,0900	0,0231	0,0965	0,0129	0,0063	110,0
0,333	0,3664	4,347	0,0277	0,0768	0,0369	0,0829	0,0154	0,0092	110,0	0,333	0,3663	4,330	0,0209	0,0848	0,0279	0,0919	0,0141	0,0070	110,0	0,333	0,3662	4,288	0,0173	0,0895	0,0231	0,0965	0,0128	0,0058	110,0
0,250	0,3663	4,322	0,0294	0,0753	0,0368	0,0830	0,0151	0,0074	110,0	0,250	0,3663	4,313	0,0222	0,0836	0,0278	0,0919	0,0139	0,0056	110,0	0,250	0,3662	4,275	0,0184	0,0885	0,0230	0,0965	0,0126	0,0046	110,0
0,200	0,3663	4,306	0,0306	0,0742	0,0367	0,0830	0,0148	0,0061	110,0	0,200	0,3662	4,301	0,0231	0,0828	0,0277	0,0919	0,0138	0,0046	110,0	0,200	0,3661	4,266	0,0191	0,0878	0,0230	0,0965	0,0125	0,0038	110,0
0,167	0,3662	4,294	0,0314	0,0735	0,0366	0,0830	0,0147	0,0052	110,0	0,167	0,3662	4,293	0,0237	0,0822	0,0277	0,0919	0,0137	0,0040	110,0	0,167	0,3661	4,260	0,0197	0,0873	0,0229	0,0965	0,0125	0,0033	110,0
0,143	0,3662	4,285	0,0320	0,0730	0,0366	0,0830	0,0146	0,0046	110.0	0,143	0,3662	4,287	0,0242	0,0818	0,0276	0,0919	0,0136	0,0035	110.0	0,143	0,3661	4,255	0,0200	0,0870	0,0229	0,0965	0,0124	0,0029	110.0

Tab. Z2.43 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 10 barA w zależności od stopnia eżekcji G₁ dla temperatur kondensatu 110 °C

	120 °C \$1 - 6 6 bar4 • \$2 - 10 bar4 61=0.667 \$1 - 6 6 bar4 • \$2 - 10 bar4 61=0.500 \$1 - 6 6 bar4 • \$2 - 10 bar4 61=0.429																												
			s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,667							s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,500							s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,429			
б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C
0,667	0,3631	3,420	0,0218	0,0367	0,0363	0,0467	0,0245	0,0145	83,9	0,667	0,3640	3,654	0,0204	0,0469	0,0341	0,0567	0,0234	0,0136	89,2	0,667	0,3644	3,771	0,0198	0,0526	0,0330	0,0620	0,0226	0,0132	92,1
0,500	0,3640	3,664	0,0308	0,0365	0,0462	0,0454	0,0243	0,0154	89,8	0,500	0,3648	3,888	0,0290	0,0466	0,0434	0,0554	0,0233	0,0145	94,7	0,500	0,3652	3,997	0,0280	0,0523	0,0419	0,0607	0,0224	0,0140	97,5
0,429	0,3645	3,794	0,0362	0,0360	0,0518	0,0445	0,0240	0,0156	93,1	0,429	0,3652	4,014	0,0341	0,0461	0,0488	0,0545	0,0231	0,0146	97,9	0,429	0,3656	4,124	0,0330	0,0518	0,0472	0,0599	0,0222	0,0142	100,5
0,376	0,3648	3,904	0,0413	0,0355	0,0568	0,0437	0,0237	0,0155	96,1	0,376	0,3656	4,121	0,0389	0,0456	0,0535	0,0538	0,0228	0,0146	100,7	0,376	0,3660	4,230	0,0376	0,0513	0,0518	0,0591	0,0220	0,0142	103,2
0,333	0,3652	4,002	0,0461	0,0350	0,0614	0,0429	0,0233	0,0154	98,8	0,333	0,3660	4,218	0,0434	0,0450	0,0579	0,0530	0,0225	0,0145	103,2	0,333	0,3663	4,324	0,0420	0,0507	0,0560	0,0584	0,0217	0,0140	105,7
0,250	0,3660	4,222	0,0580	0,0332	0,0725	0,0408	0,0221	0,0145	105,2	0,250	0,3667	4,436	0,0547	0,0431	0,0684	0,0510	0,0216	0,0137	109,3	0,250	0,3671	4,540	0,0529	0,0488	0,0662	0,0565	0,0209	0,0132	111,5
0,200	0,3665	4,374	0,0673	0,0316	0,0808	0,0391	0,0210	0,0135	109,9	0,200	0,3673	4,591	0,0636	0,0414	0,0763	0,0494	0,0207	0,0127	113,8	0,200	0,3676	4,695	0,0616	0,0471	0,0739	0,0549	0,0202	0,0123	115,9
0,167	0,3669	4,481	0,0747	0,0301	0,0871	0,0378	0,0201	0,0124	113,5	0,167	0,3677	4,704	0,0706	0,0399	0,0824	0,0481	0,0200	0,0118	117,2	0,167	0,3680	4,809	0,0684	0,0455	0,0798	0,0537	0,0195	0,0114	119,2
0,143	0,3672	4,563	0,0806	0,0289	0,0922	0,0366	0,0193	0,0115	116,4	0,143	0,3680	4,789	0,0763	0,0386	0,0872	0,0470	0,0193	0,0109	119,9	0,143	0,3681	4,816	0,0710	0,0444	0,0811	0,0534	0,0191	0,0101	120,0
			s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,367			-				s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,333		-					s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,250			
б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C
0,667	0,3647	3,868	0,0192	0,0577	0,0320	0,0666	0,0217	0,0128	94,7	0,667	0,3650	3,954	0,0187	0,0624	0,0311	0,0708	0,0208	0,0125	97,0	0,667	0,3657	4,138	0,0176	0,0735	0,0293	0,0802	0,0184	0,0117	102,4
0,500	0,3655	4,081	0,0269	0,0573	0,0404	0,0654	0,0215	0,0135	99,7	0,500	0,3658	4,175	0,0265	0,0621	0,0398	0,0695	0,0207	0,0133	102,1	0,500	0,3664	4,349	0,0250	0,0732	0,0375	0,0790	0,0183	0,0125	107,2
0,429	0,3659	4,215	0,0321	0,0569	0,0459	0,0645	0,0214	0,0138	102,9	0,429	0,3662	4,294	0,0313	0,0616	0,0447	0,0687	0,0205	0,0134	105,0	0,429	0,3668	4,462	0,0295	0,0727	0,0421	0,0782	0,0182	0,0126	109,9
0,376	0,3663	4,319	0,0366	0,0564	0,0503	0,0638	0,0212	0,0138	105,5	0,376	0,3666	4,397	0,0357	0,0610	0,0491	0,0680	0,0203	0,0134	107,5	0,376	0,3672	4,562	0,0336	0,0721	0,0462	0,0775	0,0180	0,0126	112,3
0,333	0,3666	4,413	0,0409	0,0557	0,0545	0,0631	0,0210	0,0136	107,9	0,333	0,3669	4,492	0,0399	0,0604	0,0532	0,0672	0,0201	0,0133	109,9	0,333	0,3675	4,650	0,0375	0,0715	0,0500	0,0768	0,0179	0,0125	114,4
0,250	0,3674	4,627	0,0515	0,0538	0,0643	0,0612	0,0202	0,0129	113,5	0,250	0,3676	4,700	0,0502	0,0585	0,0627	0,0655	0,0195	0,0125	115,3	0,250	0,3682	4,854	0,0472	0,0695	0,0590	0,0751	0,0174	0,0118	119,5
0,200	0,3679	4,779	0,0598	0,0521	0,0718	0,0597	0,0196	0,0120	117,7	0,200	0,3682	4,851	0,0583	0,0567	0,0699	0,0640	0,0189	0,0117	119,4	0,200	0,3682	4,846	0,0497	0,0679	0,0597	0,0750	0,0170	0,0099	120,0
0,167	0,3683	4,893	0,0665	0,0506	0,0775	0,0585	0,0190	0,0111	120,9	0,167	0,3682	4,850	0,0608	0,0554	0,0709	0,0638	0,0185	0,0101	120,0	0,167	0,3681	4,825	0,0510	0,0668	0,0595	0,0750	0,0167	0,0085	120,0
0,143	0,3681	4,826	0,0662	0,0497	0,0757	0,0589	0,0187	0,0095	120,0	0,143	0,3681	4,828	0,0619	0,0545	0,0708	0,0638	0,0182	0,0088	120,0	0,143	0,3680	4,809	0,0520	0,0660	0,0595	0,0750	0,0165	0,0074	120,0
			s1 - 6,6 bi	arA; s2 - 1	0 barA б	1=0,200							s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,167		-					s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,143		-	
62	ηCRN2s	ECRN2s	m2	m3	m14	m11	mx1	mx2	t10	62	ηCRN2s	ECRN2s	m2	m3	m14	m11	mx1	mx2	t10	62	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	Ľ	[-]	[[-]	[%]	[-]	[-J	[-]	[-]	[-]	[-]	°ل	[-]	[-J	[%]	[-]	[-]	[-]	[-]	[-]	[-]	Ľ
0,667	0,3660	4,234	0,0185	0,0802	0,0309	0,0839	0,0160	0,0124	106,3	0,667	0,3664	4,348	0,0162	0,0882	0,0270	0,0921	0,0147	0,0108	109,3	0,667	0,3666	4,415	0,0158	0,0932	0,0263	0,0960	0,0133	0,0105	111,7
0,500	0,3667	4,435	0,0259	0,0797	0,0388	0,0827	0,0159	0,0129	110,9	0,500	0,3671	4,545	0,0230	0,0878	0,0346	0,0909	0,0146	0,0115	113,7	0,500	0,3673	4,608	0,0224	0,0928	0,0337	0,0948	0,0133	0,0112	116,0
0,429	0,3671	4,544	0,0302	0,0791	0,0432	0,0819	0,0158	0,0130	113,5	0,429	0,3675	4,654	0,0272	0,0873	0,0389	0,0901	0,0145	0,0117	116,2	0,429	0,3677	4,713	0,0265	0,0923	0,0378	0,0941	0,0132	0,0114	118,3
0,376	0,3674	4,638	0,0343	0,0784	0,0471	0,0812	0,0157	0,0129	115,7	0,376	0,3678	4,747	0,0310	0,0867	0,0427	0,0895	0,0144	0,0117	118,4	0,376	0,3679	4,783	0,0296	0,0917	0,0407	0,0936	0,0131	0,0111	120,0
0,333	0,3677	4,723	0,0381	0,0777	0,0507	0,0806	0,0155	0,0127	117,8	0,333	0,3680	4,815	0,0342	0,0860	0,0455	0,0890	0,0143	0,0114	120,0	0,333	0,3679	4,772	0,0305	0,0908	0,0407	0,0936	0,0130	0,0102	120,0
0,250	0,3680	4,795	0,0437	0,0756	0,0546	0,0798	0,0151	0,0109	120,0	0,250	0,3679	4,786	0,0363	0,0840	0,0454	0,0890	0,0140	0,0091	120,0	0,250	0,3678	4,748	0,0324	0,0890	0,0405	0,0937	0,0127	0,0081	120,0
0,200	0,3679	4,770	0,0454	0,0741	0,0544	0,0799	0,0148	0,0091	120,0	0,200	0,3679	4,767	0,0377	0,0828	0,0453	0,0890	0,0138	0,0075	120,0	0,200	0,3678	4,733	0,0337	0,0879	0,0404	0,0937	0,0126	0,0067	120,0
0,167	0,3678	4,752	0,0466	0,0730	0,0543	0,0799	0,0146	0,0078	120,0	0,167	0,3678	4,754	0,0387	0,0818	0,0452	0,0890	0,0136	0,0065	120,0	0,167	0,3677	4,721	0,0346	0,0870	0,0404	0,0937	0,0124	0,0058	120,0
U.143	0.3678	4.739	0.0475	0.0722	0.0543	0.0799	0.0144	0.0068	120.0	0.143	0.3678	4.744	0.0395	0.0811	0.0451	0.0890	0.0135	0.0056	120.0	0.143	0.3677	4.713	0.0353	0.0864	0.0403	0.0937	0.0123	LU.0050	120.0

Tab. Z2.44 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 10 barA w zależności od stopnia eżekcji σ₁ dla temperatur kondensatu 120 °C

	130 °C \$1 - 6 6 bar4 • \$2 - 10 bar4 61=0.667 \$1 - 6 6 bar4 • \$2 - 10 bar4 61=0.500 \$1 - 6 6 bar4 • \$2 - 10 bar4 61=0.429																												
			s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,667							s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,500							s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,429			
б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C
0,667	0,3631	3,420	0,0218	0,0367	0,0363	0,0467	0,0245	0,0145	83,9	0,667	0,3640	3,654	0,0204	0,0469	0,0341	0,0567	0,0234	0,0136	89,2	0,667	0,3644	3,771	0,0198	0,0526	0,0330	0,0620	0,0226	0,0132	92,1
0,500	0,3640	3,664	0,0308	0,0365	0,0462	0,0454	0,0243	0,0154	89,8	0,500	0,3648	3,888	0,0290	0,0466	0,0434	0,0554	0,0233	0,0145	94,7	0,500	0,3652	3,997	0,0280	0,0523	0,0419	0,0607	0,0224	0,0140	97,5
0,429	0,3645	3,794	0,0362	0,0360	0,0518	0,0445	0,0240	0,0156	93,1	0,429	0,3652	4,014	0,0341	0,0461	0,0488	0,0545	0,0231	0,0146	97,9	0,429	0,3656	4,124	0,0330	0,0518	0,0472	0,0599	0,0222	0,0142	100,5
0,376	0,3648	3,904	0,0413	0,0355	0,0568	0,0437	0,0237	0,0155	96,1	0,376	0,3656	4,121	0,0389	0,0456	0,0535	0,0538	0,0228	0,0146	100,7	0,376	0,3660	4,230	0,0376	0,0513	0,0518	0,0591	0,0220	0,0142	103,2
0,333	0,3652	4,002	0,0461	0,0350	0,0614	0,0429	0,0233	0,0154	98,8	0,333	0,3660	4,218	0,0434	0,0450	0,0579	0,0530	0,0225	0,0145	103,2	0,333	0,3663	4,324	0,0420	0,0507	0,0560	0,0584	0,0217	0,0140	105,7
0,250	0,3660	4,222	0,0580	0,0332	0,0725	0,0408	0,0221	0,0145	105,2	0,250	0,3667	4,436	0,0547	0,0431	0,0684	0,0510	0,0216	0,0137	109,3	0,250	0,3671	4,540	0,0529	0,0488	0,0662	0,0565	0,0209	0,0132	111,5
0,200	0,3665	4,374	0,0673	0,0316	0,0808	0,0391	0,0210	0,0135	109,9	0,200	0,3673	4,591	0,0636	0,0414	0,0763	0,0494	0,0207	0,0127	113,8	0,200	0,3676	4,695	0,0616	0,0471	0,0739	0,0549	0,0202	0,0123	115,9
0,167	0,3669	4,481	0,0747	0,0301	0,0871	0,0378	0,0201	0,0124	113,5	0,167	0,3677	4,704	0,0706	0,0399	0,0824	0,0481	0,0200	0,0118	117,2	0,167	0,3680	4,809	0,0684	0,0455	0,0798	0,0537	0,0195	0,0114	119,2
0,143	0,3672	4,563	0,0806	0,0289	0,0922	0,0366	0,0193	0,0115	116,4	0,143	0,3680	4,789	0,0763	0,0386	0,0872	0,0470	0,0193	0,0109	119,9	0,143	0,3683	4,896	0,0739	0,0442	0,0845	0,0526	0,0190	0,0106	121,8
			s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,367			-	s1 - 6,6 barA; s2 - 10 barA 61=0,333								s1 - 6,6 barA; s2 - 10 barA 61=0,250											
б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C
0,667	0,3647	3,868	0,0192	0,0577	0,0320	0,0666	0,0217	0,0128	94,7	0,667	0,3650	3,954	0,0187	0,0624	0,0311	0,0708	0,0208	0,0125	97,0	0,667	0,3657	4,138	0,0176	0,0735	0,0293	0,0802	0,0184	0,0117	102,4
0,500	0,3655	4,081	0,0269	0,0573	0,0404	0,0654	0,0215	0,0135	99,7	0,500	0,3658	4,175	0,0265	0,0621	0,0398	0,0695	0,0207	0,0133	102,1	0,500	0,3664	4,349	0,0250	0,0732	0,0375	0,0790	0,0183	0,0125	107,2
0,429	0,3659	4,215	0,0321	0,0569	0,0459	0,0645	0,0214	0,0138	102,9	0,429	0,3662	4,294	0,0313	0,0616	0,0447	0,0687	0,0205	0,0134	105,0	0,429	0,3668	4,462	0,0295	0,0727	0,0421	0,0782	0,0182	0,0126	109,9
0,376	0,3663	4,319	0,0366	0,0564	0,0503	0,0638	0,0212	0,0138	105,5	0,376	0,3666	4,397	0,0357	0,0610	0,0491	0,0680	0,0203	0,0134	107,5	0,376	0,3672	4,562	0,0336	0,0721	0,0462	0,0775	0,0180	0,0126	112,3
0,333	0,3666	4,413	0,0409	0,0557	0,0545	0,0631	0,0210	0,0136	107,9	0,333	0,3669	4,492	0,0399	0,0604	0,0532	0,0672	0,0201	0,0133	109,9	0,333	0,3675	4,650	0,0375	0,0715	0,0500	0,0768	0,0179	0,0125	114,4
0,250	0,3674	4,627	0,0515	0,0538	0,0643	0,0612	0,0202	0,0129	113,5	0,250	0,3676	4,700	0,0502	0,0585	0,0627	0,0655	0,0195	0,0125	115,3	0,250	0,3682	4,854	0,0472	0,0695	0,0590	0,0751	0,0174	0,0118	119,5
0,200	0,3679	4,779	0,0598	0,0521	0,0718	0,0597	0,0196	0,0120	117,7	0,200	0,3682	4,851	0,0583	0,0567	0,0699	0,0640	0,0189	0,0117	119,4	0,200	0,3687	5,001	0,0548	0,0678	0,0657	0,0738	0,0169	0,0110	123,3
0,167	0,3683	4,893	0,0665	0,0506	0,0775	0,0585	0,0190	0,0111	120,9	0,167	0,3686	4,964	0,0647	0,0552	0,0755	0,0628	0,0184	0,0108	122,5	0,167	0,3691	5,110	0,0608	0,0662	0,0709	0,0727	0,0166	0,0101	126,2
0,143	0,3686	4,981	0,0719	0,0492	0,0821	0,0575	0,0185	0,0103	123,5	0,143	0,3689	5,052	0,0700	0,0539	0,0800	0,0618	0,0180	0,0100	125,0	0,143	0,3694	5,198	0,0657	0,0649	0,0751	0,0717	0,0162	0,0094	128,5
			s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,200							s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,167							s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,143			
б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	ک	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	Ů	[-]	[-] -	[%]	[-]	[-]	[-]	[-]	<u>[-]</u>	[-]	°C
0,667	0,3660	4,234	0,0185	0,0802	0,0309	0,0839	0,0160	0,0124	106,3	0,667	0,3664	4,348	0,0162	0,0882	0,0270	0,0921	0,0147	0,0108	109,3	0,667	0,3666	4,415	0,0158	0,0932	0,0263	0,0960	0,0133	0,0105	111,7
0,500	0,3667	4,435	0,0259	0,0797	0,0388	0,0827	0,0159	0,0129	110,9	0,500	0,3671	4,545	0,0230	0,0878	0,0346	0,0909	0,0146	0,0115	113,7	0,500	0,3673	4,608	0,0224	0,0928	0,0337	0,0948	0,0133	0,0112	116,0
0,429	0,3671	4,544	0,0302	0,0791	0,0432	0,0819	0,0158	0,0130	113,5	0,429	0,3675	4,654	0,0272	0,0873	0,0389	0,0901	0,0145	0,0117	116,2	0,429	0,3677	4,713	0,0265	0,0923	0,0378	0,0941	0,0132	0,0114	118,3
0,376	0,3674	4,638	0,0343	0,0784	0,0471	0,0812	0,0157	0,0129	115,7	0,376	0,3678	4,747	0,0310	0,0867	0,0427	0,0895	0,0144	0,0117	118,4	0,376	0,3680	4,804	0,0302	0,0917	0,0415	0,0935	0,0131	0,0113	120,4
0,333	0,3677	4,723	0,0381	0,0777	0,0507	0,0806	0,0155	0,0127	117,8	0,333	0,3681	4,831	0,0346	0,0860	0,0461	0,0888	0,0143	0,0115	120,3	0,333	0,3683	4,886	0,0336	0,0911	0,0449	0,0929	0,0130	0,0112	122,3
0,250	0,3684	4,918	0,0474	0,0756	0,0593	0,0789	0,0151	0,0119	122,6	0,250	0,3688	5,024	0,0435	0,0841	0,0544	0,0873	0,0140	0,0109	125,0	0,250	0,3690	5,075	0,0422	0,0892	0,0528	0,0913	0,0127	0,0106	126,8
0,200	0,3689	5,059	0,0547	0,0738	0,0657	0,0776	0,0148	0,0109	126,1	0,200	0,3692	5,154	0,0501	0,0824	0,0601	0,0861	0,0137	0,0100	128,2	0,200	0,3694	5,208	0,0488	0,0874	0,0586	0,0902	0,0125	0,0098	130,0
0,167	0,3693	5,165	0,0605	0,0722	0,0706	0,0765	0,0144	0,0101	128,9	0,167	0,3695	5,223	0,0544	0,0810	0,0634	0,0854	0,0135	0,0091	130,0	0,167	0,3694	5,192	0,0501	0,0862	0,0585	0,0902	0,0123	0,0084	130,0
0.143	0.3694	5.200	0.0635	0.0710	0.0726	0.0761	0.0142	0.0091	130.0	0.143	0.3694	5.208	0.0554	0.0800	0.0633	0.0854	0.0133	0.0079	130.0	0.143	0.3693	5.179	0.0511	0.0853	0.0584	0.0902	0.0122	0.0073	130.0

Tab. Z2.45 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 10 barA w zależności od stopnia eżekcji σ₁ dla temperatur kondensatu 130 °C

Tab. Z2.46 Zbiorcze wyniki obliczeń układów z dwustopnie	owym zespołem inżektorow	ym w układzie dwustopnio	wego podgrzewania wo	dy zasilającej, para zasila	ijąca
pierwszy stopień 6,6 barA, drugi stopi	ień 10 barA w zależności od	l stopnia eżekcji G1 dla tem	peratur kondensatu 140	°C	

	140 °C																												
			s1 - 6,6 b	arA; s2 - 1	.0 barA б	1=0,667							s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,500							s1 - 6,6 b	arA; s2 - 1	l0 barA б	1=0,429			
б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C
0,667	0,3631	3,420	0,0218	0,0367	0,0363	0,0467	0,0245	0,0145	83,9	0,667	0,3640	3,654	0,0204	0,0469	0,0341	0,0567	0,0234	0,0136	89,2	0,667	0,3644	3,771	0,0198	0,0526	0,0330	0,0620	0,0226	0,0132	92,1
0,500	0,3640	3,664	0,0308	0,0365	0,0462	0,0454	0,0243	0,0154	89,8	0,500	0,3648	3,888	0,0290	0,0466	0,0434	0,0554	0,0233	0,0145	94,7	0,500	0,3652	3,997	0,0280	0,0523	0,0419	0,0607	0,0224	0,0140	97,5
0,429	0,3645	3,794	0,0362	0,0360	0,0518	0,0445	0,0240	0,0156	93,1	0,429	0,3652	4,014	0,0341	0,0461	0,0488	0,0545	0,0231	0,0146	97,9	0,429	0,3656	4,124	0,0330	0,0518	0,0472	0,0599	0,0222	0,0142	100,5
0,376	0,3648	3,904	0,0413	0,0355	0,0568	0,0437	0,0237	0,0155	96,1	0,376	0,3656	4,121	0,0389	0,0456	0,0535	0,0538	0,0228	0,0146	100,7	0,376	0,3660	4,230	0,0376	0,0513	0,0518	0,0591	0,0220	0,0142	103,2
0,333	0,3652	4,002	0,0461	0,0350	0,0614	0,0429	0,0233	0,0154	98,8	0,333	0,3660	4,218	0,0434	0,0450	0,0579	0,0530	0,0225	0,0145	103,2	0,333	0,3663	4,324	0,0420	0,0507	0,0560	0,0584	0,0217	0,0140	105,7
0,250	0,3660	4,222	0,0580	0,0332	0,0725	0,0408	0,0221	0,0145	105,2	0,250	0,3667	4,436	0,0547	0,0431	0,0684	0,0510	0,0216	0,0137	109,3	0,250	0,3671	4,540	0,0529	0,0488	0,0662	0,0565	0,0209	0,0132	111,5
0,200	0,3665	4,374	0,0673	0,0316	0,0808	0,0391	0,0210	0,0135	109,9	0,200	0,3673	4,591	0,0636	0,0414	0,0763	0,0494	0,0207	0,0127	113,8	0,200	0,3676	4,695	0,0616	0,0471	0,0739	0,0549	0,0202	0,0123	115,9
0,167	0,3669	4,481	0,0747	0,0301	0,0871	0,0378	0,0201	0,0124	113,5	0,167	0,3677	4,704	0,0706	0,0399	0,0824	0,0481	0,0200	0,0118	117,2	0,167	0,3680	4,809	0,0684	0,0455	0,0798	0,0537	0,0195	0,0114	119,2
0,143	0,3672	4,563	0,0806	0,0289	0,0922	0,0366	0,0193	0,0115	116,4	0,143	0,3680	4,789	0,0763	0,0386	0,0872	0,0470	0,0193	0,0109	119,9	9 0,143 0,3683 4,896 0,0739 0,0442 0,0845 0,0526 0,0190 0,0106 12									
			s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,367							s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,333						-	s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,250	. <u> </u>		
б2	62 ηCRN2s εCRN2s m2 m3 m14 m11 mx1 mx2									б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C
0,667	0,3647	3,868	0,0192	0,0577	0,0320	0,0666	0,0217	0,0128	94,7	0,667	0,3650	3,954	0,0187	0,0624	0,0311	0,0708	0,0208	0,0125	97,0	0,667	0,3657	4,138	0,0176	0,0735	0,0293	0,0802	0,0184	0,0117	102,4
0,500	0,3655	4,081	0,0269	0,0573	0,0404	0,0654	0,0215	0,0135	99,7	0,500	0,3658	4,175	0,0265	0,0621	0,0398	0,0695	0,0207	0,0133	102,1	0,500	0,3664	4,349	0,0250	0,0732	0,0375	0,0790	0,0183	0,0125	107,2
0,429	0,3659	4,215	0,0321	0,0569	0,0459	0,0645	0,0214	0,0138	102,9	0,429	0,3662	4,294	0,0313	0,0616	0,0447	0,0687	0,0205	0,0134	105,0	0,429	0,3668	4,462	0,0295	0,0727	0,0421	0,0782	0,0182	0,0126	109,9
0,376	0,3663	4,319	0,0366	0,0564	0,0503	0,0638	0,0212	0,0138	105,5	0,376	0,3666	4,397	0,0357	0,0610	0,0491	0,0680	0,0203	0,0134	107,5	0,376	0,3672	4,562	0,0336	0,0721	0,0462	0,0775	0,0180	0,0126	112,3
0,333	0,3666	4,413	0,0409	0,0557	0,0545	0,0631	0,0210	0,0136	107,9	0,333	0,3669	4,492	0,0399	0,0604	0,0532	0,0672	0,0201	0,0133	109,9	0,333	0,3675	4,650	0,0375	0,0715	0,0500	0,0768	0,0179	0,0125	114,4
0,250	0,3674	4,627	0,0515	0,0538	0,0643	0,0612	0,0202	0,0129	113,5	0,250	0,3676	4,700	0,0502	0,0585	0,0627	0,0655	0,0195	0,0125	115,3	0,250	0,3682	4,854	0,0472	0,0695	0,0590	0,0751	0,0174	0,0118	119,5
0,200	0,3679	4,779	0,0598	0,0521	0,0718	0,0597	0,0196	0,0120	117,7	0,200	0,3682	4,851	0,0583	0,0567	0,0699	0,0640	0,0189	0,0117	119,4	0,200	0,3687	5,001	0,0548	0,0678	0,0657	0,0738	0,0169	0,0110	123,3
0,167	0,3683	4,893	0,0665	0,0506	0,0775	0,0585	0,0190	0,0111	120,9	0,167	0,3686	4,964	0,0647	0,0552	0,0755	0,0628	0,0184	0,0108	122,5	0,167	0,3691	5,110	0,0608	0,0662	0,0709	0,0727	0,0166	0,0101	126,2
0,143	0,3686	4,981	0,0719	0,0492	0,0821	0,0575	0,0185	0,0103	123,5	0,143	0,3689	5,052	0,0700	0,0539	0,0800	0,0618	0,0180	0,0100	125,0	0,143	0,3694	5,198	0,0657	0,0649	0,0751	0,0717	0,0162	0,0094	128,5
			s1 - 6,6 b	arA; s2 - 1	.0 barA б	1=0,200							s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,167							s1 - 6,6 b	arA; s2 - 1	0 barA б	1=0,143			
б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10	б2	ηCRN2s	εCRN2s	m2	m3	m14	m11	mx1	mx2	t10
[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C	[-]	[-]	[%]	[-]	[-]	[-]	[-]	[-]	[-]	°C
0,667	0,3660	4,234	0,0185	0,0802	0,0309	0,0839	0,0160	0,0124	106,3	0,667	0,3664	4,348	0,0162	0,0882	0,0270	0,0921	0,0147	0,0108	109,3	0,667	0,3666	4,415	0,0158	0,0932	0,0263	0,0960	0,0133	0,0105	111,7
0,500	0,3667	4,435	0,0259	0,0797	0,0388	0,0827	0,0159	0,0129	110,9	0,500	0,3671	4,545	0,0230	0,0878	0,0346	0,0909	0,0146	0,0115	113,7	0,500	0,3673	4,608	0,0224	0,0928	0,0337	0,0948	0,0133	0,0112	116,0
0,429	0,3671	4,544	0,0302	0,0791	0,0432	0,0819	0,0158	0,0130	113,5	0,429	0,3675	4,654	0,0272	0,0873	0,0389	0,0901	0,0145	0,0117	116,2	0,429	0,3677	4,713	0,0265	0,0923	0,0378	0,0941	0,0132	0,0114	118,3
0,376	0,3674	4,638	0,0343	0,0784	0,0471	0,0812	0,0157	0,0129	115,7	0,376	0,3678	4,747	0,0310	0,0867	0,0427	0,0895	0,0144	0,0117	118,4	0,376	0,3680	4,804	0,0302	0,0917	0,0415	0,0935	0,0131	0,0113	120,4
0,333	0,3677	4,723	0,0381	0,0777	0,0507	0,0806	0,0155	0,0127	117,8	0,333	0,3681	4,831	0,0346	0,0860	0,0461	0,0888	0,0143	0,0115	120,3	0,333	0,3683	4,886	0,0336	0,0911	0,0449	0,0929	0,0130	0,0112	122,3
0,250	0,3684	4,918	0,0474	0,0756	0,0593	0,0789	0,0151	0,0119	122,6	0,250	0,3688	5,024	0,0435	0,0841	0,0544	0,0873	0,0140	0,0109	125,0	0,250	0,3690	5,075	0,0422	0,0892	0,0528	0,0913	0,0127	0,0106	126,8
0,200	0,3689	5,059	0,0547	0,0738	0,0657	0,0776	0,0148	0,0109	126,1	0,200	0,3692	5,154	0,0501	0,0824	0,0601	0,0861	0,0137	0,0100	128,2	0,200	0,3694	5,212	0,0490	0,0874	0,0587	0,0901	0,0125	0,0098	130,1
0,167	0,3693	5,165	0,0605	0,0722	0,0706	0,0765	0,0144	0,0101	128,9	0,167	0,3696	5,269	0,0559	0,0809	0,0652	0,0850	0,0135	0,0093	131,0	0,167	0,3698	5,315	0,0543	0,0859	0,0633	0,0892	0,0123	0,0090	132,6
0,143	0,3696	5,249	0,0653	0,0708	0,0746	0,0757	0,0142	0,0093	131,1	0,143	0,3699	5,350	0,0604	0,0796	0,0690	0,0842	0,0133	0,0086	133,0	0,143	0,3701	5,395	0,0586	0,0846	0,0669	0,0884	0,0121	0,0084	134,6

SPIS RYSUNKÓW

Rys. Z2.1 S	Schemat cieplno-przepływowy prostego układu referencyjnego
Z	z jednostopniowym podgrzewaniem wody zasilającej z zastosowaniem
р	odciśnieniowego powierzchniowego wymiennika ciepła
Rys. Z2.2 C	Obliczone wartości sprawności regeneracyjnego układu referencyjnego
Z	z powierzchniowym, podciśnieniowym wymiennikiem ciepła dla różnych
с	iśnień i temperatur
Rvs. Z2.3 C	Obliczone stopnie regeneracii układu referencyjnego z powierzchniowym.
j D	podciśnieniowym wymiennikiem ciepła dla różnych ciśnień i temperatur
Rvs. 72.4 S	Schemat cieplno-przepływowy układu referencyjnego z jednostopniowym
n n	odgrzewaniem wody zasilającej z zastosowaniem mieszankowy wymienniką
P	vienła 30
Pue 7250	Deliczone wartości sprawności regeneracyjnego układu referencyjnego
Kys. 22.3 C	ponczone wartości sprawności regeneracyjnego układu referencyjnego
D	The szankowyni wynnennikieni ciepia dia tożnych cismen i temperatur
Rys. 22.6 C	Joliczone stopnie regeneracji układu referencyjnego z mieszankowym
V	vymiennikiem ciepła dla roznych cisnien i temperatur
Rys. Z2./ S	schemat cieplno-przepływowy układu referencyjnego z jednostopniowym
p	oodgrzewaniem wody zasilającej z wykorzystaniem nadciśnieniowego
v	vymiennika ciepła
Rys. Z2.8 C	Obliczone wartości sprawności regeneracyjnego układu referencyjnego
Z	z nadciśnieniowym wymiennikiem ciepła dla różnych ciśnień i temperatur
Rys. Z2.9 C	Obliczone stopnie regeneracji układu referencyjnego z nadciśnieniowym
v	vymiennikiem ciepła dla różnych ciśnień i temperatur
Rys. Z2.10	Schemat cieplno-przepływowy układu referencyjnego z jednostopniowym
	podgrzewaniem wody zasilającej z zastosowaniem nadciśnieniowego
	wymiennika ciepła oraz pompą skroplin pary grzewczej
Rys. Z2.11	Obliczone wartości sprawności regeneracyjnego układu referencyjnego
5	z nadciśnieniowym wymiennikiem ciepła oraz pompa skroplin CR N ref 2 35
Rvs. 72.12	Obliczone stopnie regeneracii układu referencyjnego z nadciśnieniowym
	wymiennikiem ciepła oraz pompa skroplin CR N ref 2
Rvs 72 13	Schemat cieplno-przepływowy układu z jednostopniowym podgrzewaniem
10,51 22.15	wody zasilającej z zastosowaniem pogrzewaczą podciśnieniowego oraz
	inżektora parowego 37
Dyg 72 14	Zalożności tomporatury wody zasilającaj (†7) sprowności cioplnej (nCPD)
Kys. 22.14	$zaleznosci temperatury wody zasinającej (t7), sprawności ciepinej (\eta CKF),$
	su dimenia masy pary zaczepowej (mz) i pary zasysanej przez mzektor (mo) ,
	w funkcji stopnia ezekcji (0) , dla założonej temperatury podgrzania la na dowate $(0^{\circ}C)$ sala i statu założonej temperatury podgrzania 20
D 7015	kondensatu 60 C, układu z podcisnieniowym wymiennikiem ciepła
Rys. Z2.15	Zalezności temperatury wody zasilającej (t /), sprawności cieplnej (ηCRP),
	strumienia masy pary zaczepowej $(m2)$ i pary zasysanej przez inżektor $(m8)$,
	w funkcji stopnia eżekcji (σ), dla założonej temperatury podgrzania
	kondensatu 70°C, układu z podciśnieniowym wymiennikiem ciepła 39
Rys. Z2.162	Zależności temperatury wody zasilającej ($t7$), sprawności cieplnej (ηCRP),
	strumienia masy pary zaczepowej (m2) i pary zasysanej przez inżektor (m8),
	w funkcji stopnia eżekcji (σ), dla założonej temperatury podgrzania
	kondensatu 80°C, układu z podciśnieniowym wymiennikiem ciepła 40
Rys. Z2.17	Schemat cieplno-przepływowy dwustopniowego układu regeneracyjnego
5	z inżektorami parowymi w układzie równoległym CR P 2s rów
Rvs. Z2.18	Schemat cieplno-przepływowy dwustopniowego układu regeneracyjnego
5	wykorzystującego inżektory parowe – układ równoległy CRP 2s szeregowy 46

Rys. Z2.19	Schemat cieplno-przepływowy układu z jednostopniowym podgrzewaniem wody zasilającej z wykorzystaniem mieszankowego wymiennika ciepła zasilanego regeneracyjnym inżektorem parowym
Rys. Z2.20	Zależności temperatury wody zasilającej ($t7$), sprawności cieplnej (ηCRP), strumienia masy pary zaczepowej ($m2$) i pary zasysanej przez inżektor ($m8$), w funkcji stopnia eżekcji (σ), dla założonej temperatury podgrzania
	kondensatu 70°C, układu z mieszankowym wymiennikiem ciepła
Rys. Z2.21	Zależności temperatury wody zasilającej ($t7$), sprawności cieplnej (ηCRP), strumienia masy pary zaczepowej ($m2$) i pary zasysanej przez inżektor ($m8$), w funkcji stopnia eżekcij (σ), dla założonej temperatury podgrzania
	kondensatu 80°C, układu z mieszankowym wymiennikiem ciepła
Rys. Z2.22	Zależności temperatury wody zasilającej ($t7$), sprawności cieplnej (ηCRP), strumienia masy pary zaczepowej ($m2$) i pary zasysanej przez inżektor ($m8$), w funkcji stopnja eżekcji (σ) dla założonej temperatury podgrzanja
	kondensatu 90°C, układu z mieszankowym wymiennikiem ciepła
Rys. Z2. 23	B Zależności temperatury wody zasilającej ($t7$), sprawności cieplnej (ηCRP),
	strumienia masy pary zaczepowej (m^2) i pary zasysanej przez inżektor (m^8) ,
	w runkcji stopnia ezekcji (σ), dla założonej temperatury podgrzania kondensatu 100°C układu z mieszankowum wymiennikiem cienta
Rvs 72.24	Zależności temperatury wody zasilającej $(t7)$ sprawności cieplnej $(nCRP)$
ICy5: 22.21	strumienia masy pary zaczepowei $(m2)$ i pary zasysanei przez inżektor $(m8)$.
	w funkcji stopnia eżekcji (σ), dla założonej temperatury podgrzania
	kondensatu 105°C, układu z mieszankowym wymiennikiem ciepła 55
Rys. Z2.25	Zależności temperatury wody zasilającej ($t7$), sprawności cieplnej (ηCRP),
	strumienia masy pary zaczepowej $(m2)$ i pary zasysanej przez inżektor $(m8)$,
	w funkcji stopnia eżekcji (σ), dla założonej temperatury podgrzania
Dua 72.26	kondensatu 110 C, układu z mieszankowym wymiennikiem ciepła
Kys. 22.20	wody zasilającej z wykorzystaniem nadciśnieniowego wymiennika cienła
	zasilanego regeneracyjnym inżektorem parowym oraz nomna skronlin 59
Rys. Z2.27	Schemat cieplno-przepływowy układu z jednostopniowym podgrzewaniem
J .	wody zasilającej z wykorzystaniem dwustopniowego zespołu inżektorowego
	zasilanego a) z jednego zaczepu pary, b) z osobnych zaczepów pary 62
Rys. Z2.28	Schemat cieplno-przepływowy układu z dwustopniowym podgrzewaniem
	wody zasilającej z wykorzystaniem dwustopniowego zespołu inżektorowego
	zasılanego a) z jednego zaczepu pary, b) z osobnych zaczepów pary 81

SPIS TABEL

Tab. Z1.1 Wyniki obliczeń parametrów pracy inżektora parowego przy zasilaniu parą	4
Tab. 71.2 Wymili abligaté normatiów nagy inizilitana normy zasilaniu norm	4
1 ab. 21.2 w yniki obliczen parametrów pracy inzektora parowego przy zasitaniu parą upustowa o ciśnieniu 10 barA	5
Tab Z1 3 Wyniki obliczeń parametrów pracy inżektora parowego przy zasilaniu para	
upustowa o ciśnieniu 6.6 barA	
Tab. Z1.4 Wyniki obliczeń parametrów pracy inżektora parowego przy zasilaniu para	-
odlotowa z turbiny pompy wody kotłowej o ciśnieniu 3.10 barA	6
Tab. Z1.5 Wyniki obliczeń parametrów pracy inżektora parowego przy zasilaniu para	-
upustowa o ciśnieniu 3,0 barA	6
Tab. Z1.6 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=6,6$ bar	rA
oraz dla drugiego stopnia $p_{s2}=10$ barA, stopień eżekcji pierwszego stopnia	
$\sigma_{s1}=0.667$	7
Tab. Z1.7 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
inżektorowego zasilanego para zaczepowa dla pierwszego stopnia $p_{s1}=6.6$ bar	rA
oraz dla drugiego stopnia $p_{s2}=10$ barA, stopień eżekcji pierwszego stopnia	
$G_{s1}=0,500$	8
Tab. Z1.8 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=6,6$ bar	rA
oraz dla drugiego stopnia $p_{s2}=10$ barA, stopień eżekcji pierwszego stopnia	
$G_{s1}=0,429$	8
Tab. Z1.9 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=6,6$ bar	rA
oraz dla drugiego stopnia $p_{s2}=10$ barA, stopień eżekcji pierwszego stopnia	
$\sigma_{s1}=0.376$	9
Tab. Z1.10 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=6,6$	
barA oraz dla drugiego stopnia $p_{s2}=10$ barA, stopień eżekcji pierwszego	
stopnia $G_{s1}=0.333$	9
Tab. Z1.11 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=6,6$	
barA oraz dla drugiego stopnia p _{s2} =10 barA, stopień eżekcji pierwszego	
stopnia $G_{s1}=0,250$	10
Tab. Z1.12 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=6,6$	
barA oraz dla drugiego stopnia p _{s2} =10 barA, stopień eżekcji pierwszego	
stopnia $G_{s1}=0,200$	10
Tab. Z1.13 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=6,6$	
barA oraz dla drugiego stopnia p _{s2} =10 barA, stopień eżekcji pierwszego	
stopnia $G_{s1}=0,167$	11
Tab. Z1.14 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p _{s1} =6,6	
barA oraz dla drugiego stopnia p _{s2} =10 barA, stopień eżekcji pierwszego	
stopnia $G_{s1}=0,143$	11
Tab. Z1.15 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p _{s1} =3,0	

	barA oraz dla drugiego stopnia $p_{s2}=10$ barA, stopień eżekcji pierwszego stopnia $G_{s1}=0.500$	2
Tab. Z1.16	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=3,0$	
	barA oraz dla drugiego stopnia p _{s2} =10 barA, stopień eżekcji pierwszego	
	stopnia $G_{s1}=0,429$	3
Tab. Z1.17	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p _{s1} =3,0	
	barA oraz dla drugiego stopnia p _{s2} =10 barA, stopień eżekcji pierwszego	
	stopnia $G_{s1}=0,376$	3
Tab. Z1.18	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=3,0$	
	barA oraz dla drugiego stopnia p _{s2} =10 barA, stopień eżekcji pierwszego	
	stopnia $G_{s1}=0,333$	4
Tab. Z1.19	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=3,0$	
	barA oraz dla drugiego stopnia p _{s2} =10 barA, stopień eżekcji pierwszego	
	stopnia $G_{s1}=0,250$	4
Tab. Z1.20	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p _{s1} =3,0	
	barA oraz dla drugiego stopnia p _{s2} =10 barA, stopień eżekcji pierwszego	
	stopnia $G_{s1}=0,200$	5
Tab. Z1.21	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p _{s1} =3,0	
	barA oraz dla drugiego stopnia p _{s2} =10 barA, stopień eżekcji pierwszego	
	stopnia G _{s1} =0,1671	5
Tab. Z1.22	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia ps1=3,0	
	barA oraz dla drugiego stopnia p _{s2} =10 barA, stopień eżekcji pierwszego	
	stopnia G _{s1} =0,1431	6
Tab. Z1.23	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia ps1=6,6	
	barA oraz dla drugiego stopnia p _{s2} =6,6 barA, stopień eżekcji pierwszego	
	stopnia $G_{s1}=0,667$ 1	7
Tab. Z1.24	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia ps1=6,6	
	barA oraz dla drugiego stopnia p _{s2} =6,6 barA, stopień eżekcji pierwszego	
	stopnia $G_{s1}=0,500$	8
Tab. Z1.25	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p _{s1} =6,6	
	barA oraz dla drugiego stopnia p _{s2} =6,6 barA, stopień eżekcji pierwszego	
	stopnia $G_{s1}=0,429$	8
Tab. Z1.26	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia ps1=6,6	
	barA oraz dla drugiego stopnia p _{s2} =6,6 barA, stopień eżekcji pierwszego	
	stopnia $G_{s1}=0,376$	9
Tab. Z1.27	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p _{s1} =6,6	
	barA oraz dla drugiego stopnia p _{s2} =6,6 barA, stopień eżekcji pierwszego	
	stopnia $G_{s1}=0,333$	9

Tab. Z1. 28	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=6,6$	
	barA oraz dla drugiego stopnia p _{s2} =6,6 barA, stopień eżekcji pierwszego	
	stopnia $G_{s1}=0,250$	20
Tab. Z1.29	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p _{s1} =6,6	
	barA oraz dla drugiego stopnia p _{s2} =6,6 barA, stopień eżekcji pierwszego	
	stopnia $G_{s1}=0,200$	20
Tab. Z1.30	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p _{s1} =6,6	
	barA oraz dla drugiego stopnia p _{s2} =6,6 barA, stopień eżekcji pierwszego	
	stopnia $G_{s1}=0,167$	21
Tab. Z1.31	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p _{s1} =6,6	
	barA oraz dla drugiego stopnia p _{s2} =6,6 barA, stopień eżekcji pierwszego	
	stopnia $G_{s1}=0,143$	21
Tab. Z1. 32	2 Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p _{s1} =3,0	
	barA oraz dla drugiego stopnia p _{s2} =6,6 barA, stopień eżekcji pierwszego	
	stopnia $G_{s1}=0,500$	22
Tab. Z1.33	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p _{s1} =3,0	
	barA oraz dla drugiego stopnia p _{s2} =6,6 barA, stopień eżekcji pierwszego	
	stopnia $G_{s1}=0,429$	23
Tab. Z1.34	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia p _{s1} =3,0	
	barA oraz dla drugiego stopnia p _{s2} =6,6 barA, stopień eżekcji pierwszego	
	stopnia $G_{s1}=0,37$	23
Tab. Z1.35	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=3,0$	
	barA oraz dla drugiego stopnia p_{s2} =6,6 barA, stopień eżekcji pierwszego	
	stopnia $G_{s1}=0,333$	24
Tab. Z1.36	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inżektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=3,0$	
	barA oraz dla drugiego stopnia $p_{s2}=6,6$ barA, stopień eżekcji pierwszego	
T 1 Z 1 A Z	stopnia $O_{s1}=0,250$	24
Tab. Z1.37	Wyniki obliczeń parametrów pracy inżektora drugiego stopnia, zespołu	
	inžektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=3,0$	
	barA oraz dla drugiego stopnia $p_{s2}=6,6$ barA, stopień eżekcji pierwszego	25
T 1 71 20	stopnia $O_{s1}=0,200$	25
Tab. Z1. 38	Wyniki obliczen parametrów pracy inżektora drugiego stopnia, zespołu	
	inžektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=3,0$	
	barA oraz dla drugiego stopnia $p_{s2}=6,6$ barA, stopień eżekcji pierwszego	
TT 1 71 00	stopnia $O_{s1}=0,16$ /	25
Tab. Z1.39	Wyniki obliczen parametrow pracy inżektora drugiego stopnia, zespołu	
	inzektorowego zasilanego parą zaczepową dla pierwszego stopnia $p_{s1}=3,0$	
	barA oraz dia drugiego stopnia $p_{s2}=0,0$ barA, stopien ezekcji pierwszego	20
	stopnia $O_{s1}=0,143$	26

Tab. Z2.1 Zbiorcze wyniki obliczeń bilansów cieplnych układów referencyjnych	36
Tab. Z2.2 Zbiorcze wyniki obliczeń dla podciśnieniowych wymienników ciepła	
zasilanych z inżektora regeneracyjnego dla temperatur kondensatu	
60,70, 80 °C	41
Tab. Z2.3 Wyniki obliczeń układu dwustopniowego równoległego dla wariantu nr 1	
$(t_7=60$ °C)	44
Tab. Z2.4 Wyniki obliczeń układu dwustopniowego równoległego dla wariantu nr 2	
$(t_7=61,8$ °C)	44
1 ab. Z2.5 Wyniki obliczen układu dwustopniowego rownoległego dla $(1.8 ^{\circ}\text{C})$	15
zoptymalizowanego wariantu nr 2 $(t_7=01,8 \text{ C})$	45
1 ab. Z2.6 Parametry pracy inzektora drugiego stopnia zasilanego z upustu 3,0 barA	17
1 zasysającego parę z inzektora pierwszego stopnia o cisnieniu 0,2/1 barA	4 /
Tab. Z2./ wyniki obliczen układu dwusiopniowego szeregowego dia wariantu nr i $(t - 60 \text{ °C})$	10
(17-00 C) Tab. 72 9 Wurilii abliazań układu dunistanniowaga szerogowaga dla warientu nr 2	48
Tab. 2.2.8 wyliki obliczeli układu dwustopiliowego szeregowego dla waltalitu lli 2 $(t_{-}=61.8 \text{ °C})$	18
Tab 72 9 Wyniki obliczeń układu dwystopniowego szeregowego dla	40
r_{ab} Z2.) wynki obnezen ukiadu uwustopinowego szeregowego ula zontymalizowanego warjantu nr 2 (t _z =61.8 °C)	49
Tab 72 10 Zbiorcze wyniki obliczeń dla mieszankowych wymienników cienła	···· די
zasilanych z inżektora regeneracyjnego dla temperatur kondensatu 70 80 90	
°C	
Tab. 72.11 Zbiorcze wyniki obliczeń dla mieszankowych wymienników ciepła	
zasilanych z inżektora regeneracyjnego dla temperatur kondensatu 100.105.	
110 °C	58
Tab. Z2.12 Zbiorcze wyniki obliczeń dla nadciśnieniowych wymienników ciepła	
zasilanych z inżektora regeneracyjnego dla temperatur kondensatu 100,110,	
120 °C	61
Tab. Z2.13 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem	
inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej,	
para zasilająca pierwszy stopień 3,0 barA, drugi stopień 6,6 barA	
w zależności od stopnia eżekcji \mathfrak{S}_1 dla temperatur kondensatu 100 °C	64
Tab. Z2.14 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem	
inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej,	1
para zasilająca pierwszy stopień 3,0 barA, drugi stopień 6,6 barA	
w zależności od stopnia eżekcji G_1 dla temperatur kondensatu 110 °C	65
Tab. Z2.15 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem	
inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej,	
para zasılająca pierwszy stopień 3,0 barA, drugi stopień 6,6 barA	
w zalezności od stopnia ezekcji O_1 dla temperatur kondensatu 120 C	66
1 ab. Z2.16 Zbiorcze wyniki obliczen układow z dwustopniowym zespołem	
inzektorowym w układzie jednostopniowego podgrzewania wody zasilającej,	
para zasilająca pierwszy stopien 3,0 barA, drugi stopien 6,6 barA	67
Tab. 72.17 Zbioreze wymiki obliozoń wkładów z dwysterniowym zesnolem	07
inzektorowym w układzie jednostopniowego podgrzowanie wody zasilejecej	
nara zasilające nierwszy stonień 3 0 bar A. drugi stonień 10 bar A. w zależnośc	i
od stopnia eżekcii 6, dla temperatur kondensatu 100 °C	- - 68
Tab 72 18 Zhiorcze wyniki obliczeń układów z dwystopniowym zespołem	00
inżektorowym w układzie jednostonniowego podgrzewania wody zasilającej	
mzektorowym w układzie jednostopniowego pougrzewania wody zasnającej,	

Tab. Z2.1	para zasilająca pierwszy stopień 3,0 barA, drugi stopień 10 barA w zależności od stopnia eżekcji G ₁ dla temperatur kondensatu 110 °C69 J Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem
	inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 3,0 barA, drugi stopień 10 barA w zależności
Tab. Z2.20	od stopnia ezekcji O ₁ dla temperatur kondensatu 120 °C
T 1 72 2	para zasilająca pierwszy stopień 3,0 barA, drugi stopień 10 barA w zależności od stopnia eżekcji G ₁ dla temperatur kondensatu 130 °C71
1 ab. Z.2.2	inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 6,6 barA
Tab. Z2.22	w zależności od stopnia eżekcji G ₁ dla temperatur kondensatu 100 °C
	para zasilająca pierwszy stopień 6,6 barA, drugi stopień 6,6 barA w zależności od stopnia eżekcji G ₁ dla temperatur kondensatu 110 °C
Tab. Z2.2	3 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej,
Tab. Z2.24	w zależności od stopnia eżekcji G ₁ dla temperatur kondensatu 120 °C
	inzektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 6,6 barA
Tab. Z2.2:	5 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej,
T 1 70 0	para zasilająca pierwszy stopień 6,6 barA, drugi stopień 10 barA w zależności od stopnia eżekcji G ₁ dla temperatur kondensatu 100 °C
1ab. Z2.20	inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 10 barA w zależności
Tab. Z2.2	od stopnia eżekcji G ₁ dla temperatur kondensatu 110 °C77 7 Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem
	nizektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 10 barA w zależności od stopnia eżekcii 6,1 dla temperatur kondensatu 120 °C
Tab. Z2.23	⁸ Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej,
Tab 72.2	para zasilająca pierwszy stopień 6,6 barA, drugi stopień 10 barA w zależności od stopnia eżekcji G ₁ dla temperatur kondensatu 130 °C
140. 22.2	inżektorowym w układzie jednostopniowego podgrzewania wody zasilającej, para zasilająca pierwszy stopień 6,6 barA, drugi stopień 10 barA w zależności
Tab. Z2.3	od stopnia eżekcji G ₁ dla temperatur kondensatu 140 °C
	para zasilająca pierwszy stopień 3,0 barA, drugi stopień 6,6 barA w zależności od stopnia eżekcji G_1 dla temperatur kondensatu 100 °C

Tab.	Z2.31	Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem
		inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej,
		para zasilająca pierwszy stopień 3,0 barA, drugi stopień 6,6 barA
		w zależności od stopnia eżekcji 61 dla temperatur kondensatu 110 °C 84
Tab.	Z2.32	Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem
		inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej,
		para zasilająca pierwszy stopień 3,0 barA, drugi stopień 6,6 barA
		w zależności od stopnia eżekcji G1 dla temperatur kondensatu 120 °C 85
Tab.	Z2.33	Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem
		inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej,
		para zasilająca pierwszy stopień 3,0 barA, drugi stopień 6,6 barA
		w zależności od stopnia eżekcji G ₁ dla temperatur kondensatu 130 °C 86
Tab.	Z2.34	Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem
		inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej,
		para zasilająca pierwszy stopień 3,0 barA, drugi stopień 10 barA w zależności
		od stopnia eżekcji 61 dla temperatur kondensatu 100 °C
Tab.	Z2.35	Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem
		inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej,
		para zasilajaca pierwszy stopień 3.0 barA, drugi stopień 10 barA w zależności
		od stopnia eżekcji G_1 dla temperatur kondensatu 110 °C
Tab.	Z2.36	Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem
		inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej.
		para zasilajaca pierwszy stopień 3,0 barA, drugi stopień 10 barA w zależności
		od stopnia eżekcji 61 dla temperatur kondensatu 120 °C
Tab.	Z2.37	Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem
		inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej.
		para zasilajaca pierwszy stopień 3.0 barA, drugi stopień 10 barA w zależności
		od stopnia eżekcji σ_1 dla temperatur kondensatu 130 °C
Tab.	Z2.38	Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem
		inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej.
		para zasilajaca pierwszy stopień 6.6 barA. drugi stopień 6.6 barA
		w zależności od stopnia eżekcji G_1 dla temperatur kondensatu 100 °C
Tab.	Z2.39	Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem
		inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej.
		para zasilaiaca pierwszy stopień 6.6 barA. drugi stopień 6.6 barA
		w zależności od stopnia eżekcii G_1 dla temperatur kondensatu 110 °C
Tab.	Z2.40	Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem
		inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej.
		para zasilaiaca pierwszy stopień 6.6 barA, drugi stopień 6.6 barA
		w zależności od stopnia eżekcij σ_1 dla temperatur kondensatu 120 °C
Tab.	Z 2.41	Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem
1		inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej.
		para zasilajaca pierwszy stopień 6 6 barA drugi stopień 6 6 barA
		w zależności od stopnia eżekcii G_1 dla temperatur kondensatu 130 °C 94
Tab	Z2 42	Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem
1 401	22112	inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej.
		para zasilająca pierwszy stopień 6 6 barA drugi stopień 10 barA w zależności
		od stopnia eżekcji σ_1 dla temperatur kondensatu 100 °C 95
Tah	72 43	Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem
1 uU.	<u>_</u> тЈ	inżektorowym w układzie dwystonniowego nodgrzewania wody zasilającej
		mzektorowym w układzie uwustopinowego podgrzewalna wody zasnającej,

	para zasilająca pierwszy stopień 6,6 barA, drugi stopień 10 barA w zależności od stopnia eżekcii 6, dla temperatur kondensatu 110 °C	96
Tab. Z2.44	Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem	20
	inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej,	
	para zasilająca pierwszy stopień 6,6 barA, drugi stopień 10 barA w zależności	
	od stopnia eżekcji G ₁ dla temperatur kondensatu 120 °C	97
Tab. Z2.45	Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem	
	inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej,	
	para zasilająca pierwszy stopień 6,6 barA, drugi stopień 10 barA w zależności	
	od stopnia eżekcji G ₁ dla temperatur kondensatu 130 °C	98
Tab. Z2.46	Zbiorcze wyniki obliczeń układów z dwustopniowym zespołem	
	inżektorowym w układzie dwustopniowego podgrzewania wody zasilającej,	
	para zasilająca pierwszy stopień 6,6 barA, drugi stopień 10 barA w zależności	
	od stopnia eżekcji G ₁ dla temperatur kondensatu 140 °C	99